Laura Santini
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Santini.
Journal of Experimental Medicine | 2003
Vega Masignani; Maurizio Comanducci; Marzia Monica Giuliani; Stefania Bambini; Jeannette Adu-Bobie; Beatrice Aricò; Brunella Brunelli; Alessandro Pieri; Laura Santini; Silvana Savino; Davide Serruto; David Litt; Simon Kroll; Jo Anne Welsch; Dan M. Granoff; Rino Rappuoli; Mariagrazia Pizza
Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.
Journal of Experimental Medicine | 2002
Maurizio Comanducci; Stefania Bambini; Brunella Brunelli; Jeannette Adu-Bobie; Beatrice Aricò; Barbara Capecchi; Marzia Monica Giuliani; Vega Masignani; Laura Santini; Silvana Savino; Dan M. Granoff; Dominique A. Caugant; Mariagrazia Pizza; Rino Rappuoli; Marirosa Mora
Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.
Proceedings of the National Academy of Sciences of the United States of America | 2010
John Donnelly; Ducci O. Medini; Giusepp E. Boccadifuoco; Alessia Biolchi; Joel I. Ward; Carl E. Frasch; E. Richard Moxon; Maria Stella; Maurizio Comanducci; Stefania Bambini; Alessandro Muzzi; William H. Andrews; Jie Chen; George W. Santos; Laura Santini; Philip Boucher; Davide Serruto; Mariagrazia Pizza; Rino Rappuoli; Marzia Monica Giuliani
A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.
Nature Biotechnology | 2002
Renata Grifantini; Erika Bartolini; Alessandro Muzzi; Monia Draghi; Elisabetta Frigimelica; Joel Berger; Giulio Ratti; Roberto Petracca; Giuliano Galli; Mauro Agnusdei; Marzia Monica Giuliani; Laura Santini; Brunella Brunelli; Hervé Tettelin; Rino Rappuoli; Filippo Randazzo; Guido Grandi
We have used DNA microarrays to follow Neisseria meningitidis serogroup B (MenB) gene regulation during interaction with human epithelial cells. Host-cell contact induced changes in the expression of 347 genes, more than 30% of which encode proteins with unknown function. The upregulated genes included transporters of iron, chloride, amino acids, and sulfate, many virulence factors, and the entire pathway of sulfur-containing amino acids. Approximately 40% of the 189 upregulated genes coded for peripherally located proteins, suggesting that cell contact promoted a substantial reorganization of the cell membrane. This was confirmed by fluorescence activated cell sorting (FACS) analysis on adhering bacteria using mouse sera against twelve adhesion-induced proteins. Of the 12 adhesion-induced surface antigens, 5 were able to induce bactericidal antibodies in mice, demonstrating that microarray technology is a valid approach for identifying new vaccine candidates and nicely complements other genome mining strategies used for vaccine discovery.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Davide Serruto; Tiziana Spadafina; Laura Ciucchi; Lisa A. Lewis; Sanjay Ram; Marta Tontini; Laura Santini; Alessia Biolchi; Kate L. Seib; Marzia Monica Giuliani; John Donnelly; Francesco Berti; Silvana Savino; Maria Scarselli; Paolo Costantino; J. Simon Kroll; Clíona O’Dwyer; Jiazhou Qiu; Andrew G. Plaut; Richard Moxon; Rino Rappuoli; Mariagrazia Pizza; Beatrice Aricò
GNA2132 is a Neisseria meningitidis antigen of unknown function, discovered by reverse vaccinology, which has been shown to induce bactericidal antibodies in animal models. Here we show that this antigen induces protective immunity in humans and it is recognized by sera of patients after meningococcal disease. The protein binds heparin in vitro through an Arg-rich region and this property correlates with increased survival of the unencapsulated bacterium in human serum. Furthermore, two proteases, the meningococcal NalP and human lactoferrin, cleave the protein upstream and downstream from the Arg-rich region, respectively. We conclude that GNA2132 is an important protective antigen of N. meningitidis and we propose to rename it, Neisserial Heparin Binding Antigen (NHBA).
Proceedings of the National Academy of Sciences of the United States of America | 2011
Anja Seubert; Samuele Calabro; Laura Santini; Barbara Galli; Alessia Genovese; Sara Valentini; Susanna Aprea; Annalisa Colaprico; Ugo D'Oro; Marzia Monica Giuliani; Michele Pallaoro; Mariagrazia Pizza; Derek O'hagan; Andreas Wack; Rino Rappuoli; Ennio De Gregorio
Oil-in-water emulsions have been successfully used to increase the efficacy, immunogenicity, and cross-protection of human vaccines; however, their mechanism of action is still largely unknown. Nlrp3 inflammasome has been previously associated to the activity of alum, another adjuvant broadly used in human vaccines, and MyD88 adaptor protein is required for the adjuvanticity of most Toll-like receptor agonists. We compared the contribution of Nlrp3 and MyD88 to the adjuvanticity of alum, the oil-in-water emulsion MF59, and complete Freunds adjuvant in mice using a three-component vaccine against serogroup B Neisseria meningitidis (rMenB). Although the basal antibody responses to the nonadjuvanted rMenB vaccine were largely dependent on Nlrp3, the high-level antibody responses induced by alum, MF59, or complete Freunds adjuvant did not require Nlrp3. Surprisingly, we found that MF59 requires MyD88 to enhance bactericidal antibody responses to the rMenB vaccine. Because MF59 did not activate any of the Toll-like receptors in vitro, we propose that MF59 requires MyD88 for a Toll-like receptor-independent signaling pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Enrico Malito; Agnese Faleri; Paola Lo Surdo; Daniele Veggi; Giulietta Maruggi; Eva Grassi; Elena Cartocci; Isabella Bertoldi; Alessia Genovese; Laura Santini; Giacomo Romagnoli; Erica Borgogni; Sébastien Brier; Carla Lo Passo; Maria Domina; Flora Castellino; Franco Felici; Stijn van der Veen; Steven Johnson; Susan M. Lea; Christoph M. Tang; Mariagrazia Pizza; Silvana Savino; Nathalie Norais; Rino Rappuoli; Matthew J. Bottomley; Vega Masignani
Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen–antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å2 on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen–antibody interfaces are required to understand and design effective immunogens.
Journal of Immunology | 2001
Dan M. Granoff; Gregory R. Moe; Marzia Monica Giuliani; Jeannette Adu-Bobie; Laura Santini; Brunella Brunelli; Francesca Piccinetti; Patricia Zuno-Mitchell; Sharon S. Lee; Paolo Neri; Luisa Bracci; Luisa Lozzi; Rino Rappuoli
Molecular mimetic Ags are of considerable interest as vaccine candidates. Yet there are few examples of mimetic Ags that elicit protective Ab against a pathogen, and the functional activity of anti-mimetic Abs has not been studied in detail. As part of the Neisseria meningitidis serogroup B genome sequencing project, a large number of novel proteins were identified. Herein, we provide evidence that genome-derived Ag 33 (GNA33), a lipoprotein with homology to Escherichia coli murein transglycosylase, elicits protective Ab to meningococci as a result of mimicking an epitope on loop 4 of porin A (PorA) in strains with serosubtype P1.2. Epitope mapping of a bactericidal anti-GNA33 mAb using overlapping peptides shows that the mAb recognizes peptides from GNA33 and PorA that share a QTP sequence that is necessary but not sufficient for binding. By flow cytometry, mouse antisera prepared against rGNA33 and the anti-GNA33 mAb bind as well as an anti-PorA P1.2 mAb to the surface of eight of nine N. meningitidis serogroup B strains tested with the P1.2 serosubtype. Anti-GNA33 Abs also are bactericidal for most P1.2 strains and, for susceptible strains, the activity of an anti-GNA33 mAb is similar to that of an anticapsular mAb but less active than an anti-P1.2 mAb. Anti-GNA Abs also confer passive protection against bacteremia in infant rats challenged with P1.2 strains. Thus, GNA33 represents one of the most effective immunogenic mimetics yet described. These results demonstrate that molecular mimetics have potential as meningococcal vaccine candidates.
Clinical and Vaccine Immunology | 2012
Brian D. Plikaytis; Maria Stella; Giuseppe Boccadifuoco; Lisa DeTora; Mauro Agnusdei; Laura Santini; Brunella Brunelli; Luca Orlandi; Isabella Simmini; Marzia Monica Giuliani; Morgan Ledroit; Eva Hong; Muhamed-Kheir Taha; Kim Ellie; Gowrisankar Rajam; George M. Carlone; Heike Claus; Ulrich Vogel; Ray Borrow; Jamie Findlow; Stefanie Gilchrist; Paola Stefanelli; Cecilia Fazio; Anna Carannante; Jan Oksnes; Elisabeth Fritzsønn; Anne-Marie Klem; Dominique A. Caugant; Raquel Abad; Julio A. Vázquez
ABSTRACT The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or “relative potency” (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified.
Journal of Molecular Biology | 2009
Maria Scarselli; Francesca Cantini; Laura Santini; Daniele Veggi; Sara Dragonetti; Claudio Donati; Silvana Savino; Marzia Monica Giuliani; Maurizio Comanducci; Federica Di Marcello; Giacomo Romagnoli; Mariagrazia Pizza; Lucia Banci; Rino Rappuoli
The factor H binding protein (fHbp) is a 27-kDa membrane-anchored lipoprotein of Neisseria meningitidis that allows the survival of the bacterium in human plasma; it is also a major component of a universal vaccine against meningococcus B. In this study, we used nuclear magnetic resonance spectroscopy, mutagenesis, and in silico modeling to map the epitope recognized by MAb502, a bactericidal monoclonal antibody elicited by fHbp. The data show that the antibody recognizes a conformational epitope within a well-defined area of the immunodominant C-terminal domain of the protein that is formed by two loops connecting different beta-strands of a beta-barrel and a short alpha-helix brought in spatial proximity by the protein folding. The identification of the protective epitopes of fHbp is an important factor for understanding the mechanism(s) of an effective immune response and provides valuable guidelines for designing variants of the protein able to induce broadly protective immunity.