Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marzia Monica Giuliani is active.

Publication


Featured researches published by Marzia Monica Giuliani.


Journal of Experimental Medicine | 2003

Vaccination against Neisseria meningitidis Using Three Variants of the Lipoprotein GNA1870

Vega Masignani; Maurizio Comanducci; Marzia Monica Giuliani; Stefania Bambini; Jeannette Adu-Bobie; Beatrice Aricò; Brunella Brunelli; Alessandro Pieri; Laura Santini; Silvana Savino; Davide Serruto; David Litt; Simon Kroll; Jo Anne Welsch; Dan M. Granoff; Rino Rappuoli; Mariagrazia Pizza

Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.


Journal of Experimental Medicine | 2002

NadA, a Novel Vaccine Candidate of Neisseria meningitidis

Maurizio Comanducci; Stefania Bambini; Brunella Brunelli; Jeannette Adu-Bobie; Beatrice Aricò; Barbara Capecchi; Marzia Monica Giuliani; Vega Masignani; Laura Santini; Silvana Savino; Dan M. Granoff; Dominique A. Caugant; Mariagrazia Pizza; Rino Rappuoli; Marirosa Mora

Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.


Vaccine | 2001

Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants.

Mariagrazia Pizza; Marzia Monica Giuliani; Mariarita Fontana; E. Monaci; Gillian Douce; Gordon Dougan; Kingston H. G. Mills; R. Rappuoli; G. Del Giudice

Most vaccines are still delivered by injection. Mucosal vaccination would increase compliance and decrease the risk of spread of infectious diseases due to contaminated syringes. However, most vaccines are unable to induce immune responses when administered mucosally, and require the use of strong adjuvant on effective delivery systems. Cholera toxin (CT) and Escherichia coli enterotoxin (LT) are powerful mucosal adjuvants when co-administered with soluble antigens. However, their use in humans is hampered by their extremely high toxicity. During the past few years, site-directed mutagenesis has permitted the generation of LT and CT mutants fully non toxic or with dramatically reduced toxicity, which still retain their strong adjuvanticity at the mucosal level. Among these mutants, are LTK63 (serine-to-lysine substitution at position 63 in the A subunit) and LTR72 (alanine-to-arginine substitution at position 72 in the A subunit). The first is fully non toxic, whereas the latter retains some residual enzymatic activity. Both of them are extremely active as mucosal adjuvants, being able to induce very high titers of antibodies specific for the antigen with which they are co-administered. Both mutants have now been tested as mucosal adjuvants in different animal species using a wide variety of antigens. Interestingly, mucosal delivery (nasal or oral) of antigens together with LTK63 or LTR72 mutants also conferred protection against challenge in appropriate animal models (e.g. tetanus, Helicobacter pylori, pertussis, pneumococci, influenza, etc). In conclusion, these LTK63 and LTR72 mutants are safe adjuvants to enhance the immunogenicity of vaccines at the mucosal level, and will be tested soon in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines

John Donnelly; Ducci O. Medini; Giusepp E. Boccadifuoco; Alessia Biolchi; Joel I. Ward; Carl E. Frasch; E. Richard Moxon; Maria Stella; Maurizio Comanducci; Stefania Bambini; Alessandro Muzzi; William H. Andrews; Jie Chen; George W. Santos; Laura Santini; Philip Boucher; Davide Serruto; Mariagrazia Pizza; Rino Rappuoli; Marzia Monica Giuliani

A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.


Nature Biotechnology | 2002

Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays

Renata Grifantini; Erika Bartolini; Alessandro Muzzi; Monia Draghi; Elisabetta Frigimelica; Joel Berger; Giulio Ratti; Roberto Petracca; Giuliano Galli; Mauro Agnusdei; Marzia Monica Giuliani; Laura Santini; Brunella Brunelli; Hervé Tettelin; Rino Rappuoli; Filippo Randazzo; Guido Grandi

We have used DNA microarrays to follow Neisseria meningitidis serogroup B (MenB) gene regulation during interaction with human epithelial cells. Host-cell contact induced changes in the expression of 347 genes, more than 30% of which encode proteins with unknown function. The upregulated genes included transporters of iron, chloride, amino acids, and sulfate, many virulence factors, and the entire pathway of sulfur-containing amino acids. Approximately 40% of the 189 upregulated genes coded for peripherally located proteins, suggesting that cell contact promoted a substantial reorganization of the cell membrane. This was confirmed by fluorescence activated cell sorting (FACS) analysis on adhering bacteria using mouse sera against twelve adhesion-induced proteins. Of the 12 adhesion-induced surface antigens, 5 were able to induce bactericidal antibodies in mice, demonstrating that microarray technology is a valid approach for identifying new vaccine candidates and nicely complements other genome mining strategies used for vaccine discovery.


Lancet Infectious Diseases | 2013

Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment.

Ulrich Vogel; Muhamed-Kheir Taha; Julio A. Vázquez; Jamie Findlow; Heike Claus; Paola Stefanelli; Dominique A. Caugant; Paula Kriz; Raquel Abad; Stefania Bambini; Anna Carannante; Ala Eddine Deghmane; Cecilia Fazio; Matthias Frosch; Giacomo Frosi; Stefanie Gilchrist; Marzia Monica Giuliani; Eva Hong; Morgan Ledroit; Pietro G Lovaglio; Jay Lucidarme; Martin Musilek; Alessandro Muzzi; Jan Oksnes; Fabio Rigat; Luca Orlandi; Maria Stella; Danielle Thompson; Mariagrazia Pizza; Rino Rappuoli

BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.


Vaccine | 1998

Protection against Helicobacter pylori infection in mice by intragastric vaccination with H. pylori antigens is achieved using a non-toxic mutant of E. coli heat-labile enterotoxin (LT) as adjuvant

Marta Marchetti; Michela Rossi; Valentina Giannelli; Marzia Monica Giuliani; Mariagrazia Pizza; Stefano Censini; Antonello Covacci; Paola Massari; Cristina Pagliaccia; Roberto Manetti; John L. Telford; Gillian Douce; Gordon Dougan; Rino Rappuoli; Paolo Ghiara

We have previously shown that infection of mice with H. pylori can be prevented by oral immunization with H. pylori antigens given together with E. coli heat-labile enterotoxin (LT) as adjuvant. Since LT cannot be used in humans because of its unacceptable toxicity, we investigated whether protection of mice could be achieved by co-administration of antigens with non-toxic LT mutants. Here we show that CD1/SPF mice are protected against infection after oral vaccination with either purified H. pylori antigens (native and recombinant VacA, urease and CagA), or whole-cell vaccine formulations, given together with the non-toxic mutant LTK63 as a mucosal adjuvant. Furthermore we show that such protection is antigen-specific since immunization with recombinant or native VacA plus LTK63 conferred protection against infection by an H. pylori Type I strain, which expresses VacA, but not against challenge with a Type II strain which is not able to express this antigen. These results show that: (1) protection against H. pylori can be achieved in the mouse model of infection using subunit recombinant constructs plus non-toxic mucosal adjuvants; and (2) this mouse model is an useful tool in testing H. pylori vaccine formulations for eventual use in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans

Davide Serruto; Tiziana Spadafina; Laura Ciucchi; Lisa A. Lewis; Sanjay Ram; Marta Tontini; Laura Santini; Alessia Biolchi; Kate L. Seib; Marzia Monica Giuliani; John Donnelly; Francesco Berti; Silvana Savino; Maria Scarselli; Paolo Costantino; J. Simon Kroll; Clíona O’Dwyer; Jiazhou Qiu; Andrew G. Plaut; Richard Moxon; Rino Rappuoli; Mariagrazia Pizza; Beatrice Aricò

GNA2132 is a Neisseria meningitidis antigen of unknown function, discovered by reverse vaccinology, which has been shown to induce bactericidal antibodies in animal models. Here we show that this antigen induces protective immunity in humans and it is recognized by sera of patients after meningococcal disease. The protein binds heparin in vitro through an Arg-rich region and this property correlates with increased survival of the unencapsulated bacterium in human serum. Furthermore, two proteases, the meningococcal NalP and human lactoferrin, cleave the protein upstream and downstream from the Arg-rich region, respectively. We conclude that GNA2132 is an important protective antigen of N. meningitidis and we propose to rename it, Neisserial Heparin Binding Antigen (NHBA).


Vaccine | 2012

The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens.

Davide Serruto; Matthew J. Bottomley; Sanjay Ram; Marzia Monica Giuliani; Rino Rappuoli

Neisseria meningitidis is a major cause of endemic cases and epidemics of meningitis and devastating septicemia. Although effective vaccines exist for several serogroups of pathogenic N. meningitidis, conventional vaccinology approaches have failed to provide a universal solution for serogroup B (MenB) which consequently remains an important burden of disease worldwide. The advent of whole-genome sequencing changed the approach to vaccine development, enabling the identification of potential vaccine candidates starting directly with the genomic information, with a process named reverse vaccinology. The application of reverse vaccinology to MenB allowed the identification of new protein antigens able to induce bactericidal antibodies. Three highly immunogenic antigens (fHbp, NadA and NHBA) were combined with outer membrane vesicles and formulated for human use in a multicomponent vaccine, named 4CMenB. This is the first MenB vaccine based on recombinant proteins able to elicit a robust bactericidal immune response in adults, adolescents and infants against a broad range of serogroup B isolates. This review describes the successful story of the development of the 4CMenB vaccine, with particular emphasis on the functional, immunological and structural characterization of the protein antigens included in the vaccine.


Molecular Microbiology | 1994

PROBING THE STRUCTURE-ACTIVITY RELATIONSHIP OF ESCHERICHIA COLI LT-A BY SITE-DIRECTED MUTAGENESIS

Mariagrazia Pizza; Mario Domenighini; Wim G. J. Hol; Valentine Giannelli; Maria Rita Fontana; Marzia Monica Giuliani; Claudia Magagnoli; Samuele Peppoloni; Roberto Manetti; Rino Rappuoli

Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat‐labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site‐directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non‐toxic new molecules containing mutations of single amino acids such as Val‐53 → Glu or Asp, Ser‐63 → Lys, Val‐97 → Lys, Tyr‐104 → Lys or Asp, and Ser‐14 → Lys or Glu. This group also included mutations in amino acids such as Arg‐7, Glu‐110 and Glu‐112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu‐41 → Phe, Ala‐45 → Tyr or Glu, Val‐53 → Tyr, Val‐60 → Gly, Ser‐68 → Pro, His‐70 → Pro, Val‐97 → Tyr and Ser‐114 → Tyr. The third group contained those molecules that maintained a wild‐type level of toxicity in spite of the mutations introduced: Arg‐54 → Lys or Ala, Tyr‐59 → Met, Ser‐68 → Lys, Ala‐72 → Arg, His or Asp and Arg‐192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non‐toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.

Collaboration


Dive into the Marzia Monica Giuliani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge