Laura Semprun-Prieto
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Semprun-Prieto.
Cell Stem Cell | 2009
Ryang Hwa Lee; Andrey A. Pulin; Min Jeong Seo; Daniel J. Kota; Joni Ylostalo; Benjamin L. Larson; Laura Semprun-Prieto; Patrice Delafontaine; Darwin J. Prockop
Quantitative assays for human DNA and mRNA were used to examine the paradox that intravenously (i.v.) infused human multipotent stromal cells (hMSCs) can enhance tissue repair without significant engraftment. After 2 x 10(6) hMSCs were i.v. infused into mice, most of the cells were trapped as emboli in lung. The cells in lung disappeared with a half-life of about 24 hr, but <1000 cells appeared in six other tissues. The hMSCs in lung upregulated expression of multiple genes, with a large increase in the anti-inflammatory protein TSG-6. After myocardial infarction, i.v. hMSCs, but not hMSCs transduced with TSG-6 siRNA, decreased inflammatory responses, reduced infarct size, and improved cardiac function. I.v. administration of recombinant TSG-6 also reduced inflammatory responses and reduced infarct size. The results suggest that improvements in animal models and patients after i.v. infusions of MSCs are at least in part explained by activation of MSCs to secrete TSG-6.
The American Journal of the Medical Sciences | 2011
Sergiy Sukhanov; Tadashi Yoshida; A. Michael Tabony; Yusuke Higashi; Sarah Galvez; Patrice Delafontaine; Laura Semprun-Prieto
Muscle atrophy (cachexia) is a muscle wasting syndrome associated with several pathological conditions in humans such as congestive heart failure, diabetes, AIDS, cancer and renal failure, and the presence of cachexia worsens outcome. Many of the conditions associated with cachexia are accompanied by stimulation of the renin-angiotensin system and elevation in angiotensin II (ang II) levels. Ang II infusion induces skeletal muscle atrophy in rodents and mechanisms include increased expression of the E3 ligases atrogin-1/MuRF-1, an elevated rate of ubiquitin-proteasome mediated proteolysis and increased reactive oxygen species (ROS) levels, closely mimicking conditions of human cachexia. Ang II-induced oxidative stress contributes to muscle atrophy in a mouse model. Nicotinamide adenine dinucleotide phosphate oxidase- and mitochondria-derived ROS contribute to ang II-induced oxidative stress. Specific targeting of ROS and nicotinamide adenine dinucleotide phosphate oxidase/mitochondria cross-talk could be a beneficial, novel therapy to treat cachexia.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Tadashi Yoshida; Laura Semprun-Prieto; Sergiy Sukhanov; Patrice Delafontaine
Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle prevented ANG II-induced skeletal muscle wasting and the expression of atrogin-1, but not MuRF-1. Dominant-negative Akt and constitutively active Foxo-1 blocked the ability of IGF-1 to prevent ANG II-mediated upregulation of atrogin-1 and skeletal muscle wasting. Our findings demonstrate that the ability of IGF-1 to prevent ANG II-induced skeletal muscle wasting is mediated via an Akt- and Foxo-1-dependent signaling pathway that results in inhibition of atrogin-1 but not MuRF-1 expression. These data suggest strongly that atrogin-1 plays a critical role in mechanisms of ANG II-induced wasting in vivo.
Biochemical and Biophysical Research Communications | 2011
Laura Semprun-Prieto; Sergiy Sukhanov; Tadashi Yoshida; Bashir M. Rezk; Romer A. Gonzalez-Villalobos; Charlotte Vaughn; A. Michael Tabony; Patrice Delafontaine
Angiotensin II (Ang II) causes skeletal muscle wasting via an increase in muscle catabolism. To determine whether the wasting effects of Ang II were related to its ability to increase NADPH oxidase-derived reactive oxygen species (ROS) we infused wild-type C57BL/6J or p47(phox)(-/-) mice with vehicle or Ang II for 7days. Superoxide production was increased 2.4-fold in the skeletal muscle of Ang II infused mice, and this increase was prevented in p47(phox)(-/-) mice. Apocynin treatment prevented Ang II-induced superoxide production in skeletal muscle, consistent with Ang II increasing NADPH oxidase derived ROS. Ang II induced loss of body and skeletal muscle weight in C57BL/6J mice, whereas the reduction was significantly attenuated in p47(phox)(-/-) animals. The reduction of skeletal muscle weight caused by Ang II was associated with an increase of proteasome activity, and this increase was completely prevented in the skeletal muscle of p47(phox)(-/-) mice. In conclusion, Ang II-induced skeletal muscle wasting is in part dependent on NADPH oxidase derived ROS.
American Journal of Physiology-renal Physiology | 2010
Romer A. Gonzalez-Villalobos; Ryousuke Satou; Naro Ohashi; Laura Semprun-Prieto; Akemi Katsurada; Catherine Kim; G. M. Upchurch; Minolfa C. Prieto; Hiroyuki Kobori; L. Gabriel Navar
Angiotensin-converting enzyme (ACE) inhibition (ACEi) ameliorates the development of hypertension and the intrarenal ANG II augmentation in ANG II-infused mice. To determine if these effects are associated with changes in the mouse intrarenal renin-angiotensin system, the expression of angiotensinogen (AGT), renin, ACE, angiotensin type 1 receptor (AT(1)R) mRNA (by quanitative RT-PCR) and protein [by Western blot (WB) and/or immunohistochemistry (IHC)] were analyzed. C57BL/6J male mice (9-12 wk old) were distributed as controls (n = 10), ANG II infused (ANG II = 8, 400 ng x kg(-1) x min(-1) for 12 days), ACEi only (ACEi = 10, lisinopril, 100 mg/l), and ANG II infused + ACEi (ANG II + ACEi = 11). When compared with controls (1.00), AGT protein (by WB) was increased by ANG II (1.29 +/- 0.13, P < 0.05), and this was not prevented by ACEi (ACEi + ANG II, 1.31 +/- 0.14, P < 0.05). ACE protein (by WB) was increased by ANG II (1.21 +/- 0.08, P < 0.05), and it was reduced by ACEi alone (0.88 +/- 0.07, P < 0.05) or in combination with ANG II (0.80 +/- 0.07, P < 0.05). AT(1)R protein (by WB) was increased by ANG II (1.27 +/- 0.06, P < 0.05) and ACEi (1.17 +/- 0.06, P < 0.05) but not ANG II + ACEi [1.15 +/- 0.06, not significant (NS)]. Tubular renin protein (semiquantified by IHC) was increased by ANG II (1.49 +/- 0.23, P < 0.05) and ACEi (1.57 +/- 0.15, P < 0.05), but not ANG II + ACEi (1.10 +/- 0.15, NS). No significant changes were observed in AGT, ACE, or AT(1)R mRNA. In summary, reduced responses of intrarenal tubular renin, ACE, and the AT(1)R protein to the stimulatory effects of chronic ANG II infusions, in the presence of ACEi, are associated with the effects of this treatment to ameliorate augmentations in blood pressure and intrarenal ANG II content during ANG II-induced hypertension.
Hypertension | 2009
Romer A. Gonzalez-Villalobos; Ryousuke Satou; Dale M. Seth; Laura Semprun-Prieto; Akemi Katsurada; Hiroyuki Kobori; Gabriel L. Navar
The extent to which endogenous angiotensin (Ang) II formation is responsible for increasing kidney Ang II content and blood pressure during Ang II–induced hypertension is unknown. To address this, mice were treated with an Ang-converting enzyme (ACE) inhibitor (ACEi) to block endogenous Ang II formation during chronic Ang II infusions. C57BL/6J male mice (8 to 12 weeks) were subjected to Ang II infusions (400 ng/kg per minute) with or without an ACEi (lisinopril, 100 mg/L in the drinking water) for 12 days. Blood pressure was monitored by tail-cuff method and telemetry. Ang II content was determined by radioimmunoanalysis. Ang II infusions increased 24-hour mean arterial pressure significantly (141.0±3.7 mm Hg) versus controls (110.0±1.0 mm Hg). ACEi prevented the increase in concentration in Ang II–infused mice (Ang II+ACEi; 114.0±7.4 mm Hg; P value not significant). Plasma Ang II content was significantly increased by Ang II (367±60 fmol/mL) versus controls (128±22 fmol/mL; P<0.05); plasma Ang II was not altered by ACEi alone (90±31) or in combination with Ang II infusions (76±27). Intrarenal Ang II content was significantly increased by Ang II (998±143 fmol/g) versus controls (524±60 fmol/g; P<0.05), and this was prevented by ACEi (Ang II+ACEi; 484±102 fmol/g; P value not significant). Thus, ACEi ameliorates the increases in blood pressure and intrarenal Ang II content caused by Ang II infusions, indicating that endogenous ACE-mediated Ang II formation plays a significant role in the increases of blood pressure and intrarenal Ang II during Ang II–induced hypertension.
Endocrinology | 2012
Tadashi Yoshida; Laura Semprun-Prieto; Richard D. Wainford; Sergiy Sukhanov; Daniel R. Kapusta; Patrice Delafontaine
Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated.
Journal of Biological Chemistry | 2013
Tadashi Yoshida; Sarah Galvez; Sumit Tiwari; Bashir M. Rezk; Laura Semprun-Prieto; Yusuke Higashi; Sergiy Sukhanov; Zipora Yablonka-Reuveni; Patrice Delafontaine
Background: Angiotensin II is elevated in cachexia and induces skeletal muscle atrophy. Results: Angiotensin inhibits muscle stem (satellite) cell proliferation via a Notch-dependent mechanism and depletes the satellite cell pool. Conclusion: Angiotensin prevents skeletal muscle regeneration by suppressing satellite cell function. Significance: This is the first report to show that satellite cells express angiotensin receptors and that angiotensin inhibits regeneration. Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Although patients with advanced CHF or CKD often have increased angiotensin II (Ang II) levels and cachexia and Ang II causes skeletal muscle wasting in rodents, the potential effects of Ang II on muscle regeneration are unknown. Muscle regeneration is highly dependent on the ability of a pool of muscle stem cells (satellite cells) to proliferate and to repair damaged myofibers or form new myofibers. Here we show that Ang II reduced skeletal muscle regeneration via inhibition of satellite cell (SC) proliferation. Ang II reduced the number of regenerating myofibers and decreased expression of SC proliferation/differentiation markers (MyoD, myogenin, and active-Notch) after cardiotoxin-induced muscle injury in vivo and in SCs cultured in vitro. Ang II depleted the basal pool of SCs, as detected in Myf5nLacZ/+ mice and by FACS sorting, and this effect was inhibited by Ang II AT1 receptor (AT1R) blockade and in AT1aR-null mice. AT1R was highly expressed in SCs, and Notch activation abrogated the AT1R-mediated antiproliferative effect of Ang II in cultured SCs. In mice that developed CHF postmyocardial infarction, there was skeletal muscle wasting and reduced SC numbers that were inhibited by AT1R blockade. Ang II inhibition of skeletal muscle regeneration via AT1 receptor-dependent suppression of SC Notch and MyoD signaling and proliferation is likely to play an important role in mechanisms leading to cachexia in chronic disease states such as CHF and CKD.
PLOS ONE | 2012
Bashir M. Rezk; Tadashi Yoshida; Laura Semprun-Prieto; Yusuke Higashi; Sergiy Sukhanov; Patrice Delafontaine
Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD.
Circulation | 2012
Tadashi Yoshida; Sarah Galvez; Sumit Tiwari; Bashir M. Rezk; Laura Semprun-Prieto; Sergiy Sukhanov; Zipora Yablonka-Reuveni; Patrice Delafontaine