Laurel A. Lagenaur
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurel A. Lagenaur.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Theresa Li-Yun Chang; Chia-Hwa Chang; David A. Simpson; Qiang Xu; Patrick Martin; Laurel A. Lagenaur; Gary K. Schoolnik; David D. Ho; Sharon L. Hillier; Mark Holodniy; John A. Lewicki; Peter P. Lee
The predominant mode of HIV transmission worldwide is via heterosexual contact, with the cervico-vaginal mucosa being the main portal of entry in women. The cervico-vaginal mucosa is naturally colonized with commensal bacteria, primarily lactobacilli. To address the urgent need for female-controlled approaches to block the heterosexual transmission of HIV, we have engineered natural human vaginal isolates of Lactobacillus jensenii to secrete two-domain CD4 (2D CD4) proteins. The secreted 2D CD4 recognized a conformation-dependent anti-CD4 antibody and bound HIV type 1 (HIV-1) gp120, suggesting that the expressed proteins adopted a native conformation. Single-cycle infection assays using HIV-1HxB2 carrying a luciferase reporter gene demonstrated that Lactobacillus-derived 2D CD4 inhibited HIV-1 entry into target cells in a dose-dependent manner. Importantly, coincubation of the engineered bacteria with recombinant HIV-1HxB2 reporter virus led to a significant decrease in virus infectivity of HeLa cells expressing CD4–CXCR4–CCR5. Engineered lactobacilli also caused a modest, but statistically significant, decrease in infectivity of a primary isolate, HIV-1JR-FL. This represents an important first step toward the development of engineered commensal bacteria within the vaginal microflora to inhibit heterosexual transmission of HIV.
Antimicrobial Agents and Chemotherapy | 2006
Xiaowen Liu; Laurel A. Lagenaur; David A. Simpson; Kirsten Essenmacher; Courtney L. Frazier-Parker; Yang Liu; Daniel Tsai; Srinivas S. Rao; Dean H. Hamer; Thomas Parks; Peter P. Lee; Qiang Xu
ABSTRACT Women are at significant risk of human immunodeficiency virus (HIV) infection, with the cervicovaginal mucosa serving as a major portal for virus entry. Female-initiated preventatives, including topical microbicides, are urgently needed to help curtail the HIV/AIDS pandemic. Here we report on the development of a novel, live microbicide that employs a natural vaginal strain of Lactobacillus jensenii engineered to deliver the potent HIV inhibitor cyanovirin-N (CV-N). To facilitate efficient expression of CV-N by this bacterium, the L. jensenii 1153 genome was sequenced, allowing identification of native regulatory elements and sites for the chromosomal integration of heterologous genes. A CV-N expression cassette was optimized and shown to produce high levels of structurally intact CV-N when expressed in L. jensenii. Lactobacillus-derived CV-N was capable of inhibiting CCR5-tropic HIVBaL infectivity in vitro with a 50% inhibitory concentration of 0.3 nM. The CV-N expression cassette was stably integrated as a single copy into the bacterial chromosome and resolved from extraneous plasmid DNA without adversely affecting the bacterial phenotype. This bacterial strain was capable of colonizing the vagina and producing full-length CV-N when administered intravaginally to mice during estrus phase. The CV-N-producing Lactobacillus was genetically stable when propagated in vitro and in vivo. This work represents a major step towards the development of an inexpensive yet durable protein-based microbicide to block the heterosexual transmission of HIV in women.
Mucosal Immunology | 2011
Laurel A. Lagenaur; Brigitte E Sanders-Beer; Beda Brichacek; Ranajit Pal; Xiaowen Liu; Yang Liu; Rosa R. Yu; David Venzon; Peter P. Lee; Dean H. Hamer
Most human immunodeficiency virus (HIV) transmissions in women occur through the cervicovaginal mucosa, which is coated by a bacterial biofilm including Lactobacillus. This commensal bacterium has a role in maintaining a healthy mucosa and can be genetically engineered to produce antiviral peptides. Here, we report a 63% reduction in transmission of a chimeric simian/HIV (SHIVSF162P3) after repeated vaginal challenges of macaques treated with Lactobacillus jensenii expressing the HIV-1 entry inhibitor cyanovirin-N. Furthermore, peak viral loads in colonized macaques with breakthrough infection were reduced sixfold. Colonization and prolonged antiviral protein secretion by the genetically engineered lactobacilli did not cause any increase in proinflammatory markers. These findings lay the foundation for an accessible and durable approach to reduce heterosexual transmission of HIV in women, which is coitally independent, inexpensive, and enhances the natural protective effects of the vaginal microflora.
Applied and Environmental Microbiology | 2008
Xiaowen Liu; Laurel A. Lagenaur; Peter P. Lee; Qiang Xu
ABSTRACT Women are at significant risk of heterosexually transmitted human immunodeficiency virus (HIV) infection, with the mucosal epithelium of the cervix and vagina serving as a major portal of entry. The cervicovaginal mucosa naturally harbors dynamic microflora composed predominantly of lactobacilli, which may be genetically modified to serve as a more efficient protective barrier against the heterosexual transmission of HIV. We selected a vaginal strain of Lactobacillus, L. jensenii 1153, for genetic modification to display surface-anchored anti-HIV proteins. Genomic sequencing analyses revealed that L. jensenii 1153 encodes several unique high-molecular-weight cell wall-anchored proteins with a C-terminal cell wall sorting LPQTG motif. In this report, we employed these proteins to express a surface-anchored two-domain CD4 (2D CD4) molecule in L. jensenii 1153. Our studies indicated that the C-terminal cell wall sorting signal LPQTG motif alone is insufficient to drive the surface expression of heterologous proteins, and the display of surface-anchored 2D CD4 molecules required native sequences of a defined length upstream of the unique C-terminal LPQTG cell wall sorting signal and the positively charged C terminus in a Lactobacillus-based expression system. The modified L. jensenii strain displayed 2D CD4 molecules that were uniformly distributed on bacterial surfaces. The surface-anchored 2D CD4 molecule was recognized by a conformation-dependent anti-CD4 antibody, suggesting that the expressed proteins adopted a native conformation. The establishment of this Lactobacillus-based surface expression system, with potential broad applicability, represents a major step toward developing an inexpensive yet durable approach to topical microbicides for the mitigation of heterosexual transmission of HIV and other mucosally transmitted viral pathogens.
Retrovirology | 2010
Laurel A. Lagenaur; Vadim A Villarroel; Virgilio Bundoc; Barna Dey; Edward A. Berger
BackgroundWe previously described a potent recombinant HIV-1 neutralizing protein, sCD4-17b, composed of soluble CD4 attached via a flexible polypeptide linker to an SCFv of the 17b human monoclonal antibody directed against the highly conserved CD4-induced bridging sheet of gp120 involved in coreceptor binding. The sCD4 moiety of the bifunctional protein binds to gp120 on free virions, thereby enabling the 17b SCFv moiety to bind and block the gp120/coreceptor interaction required for entry. The previous studies using the MAGI-CCR5 assay system indicated that sCD4-17b (in concentrated cell culture medium, or partially purified) potently neutralized several genetically diverse HIIV-1 primary isolates; however, at the concentrations tested it was ineffective against several other strains despite the conservation of binding sites for both CD4 and 17b. To address this puzzle, we designed variants of sCD4-17b with different linker lengths, and tested the neutralizing activities of the immunoaffinity purified proteins over a broader concentration range against a large number of genetically diverse HIV-1 primary isolates, using the TZM-bl Env pseudotype assay system. We also examined the sCD4-17b sensitivities of isogenic viruses generated from different producer cell types.ResultsWe observed that immunoaffinity purified sCD4-17b effectively neutralized HIV-1 pseudotypes, including those from HIV-1 isolates previously found to be relatively insensitive in the MAGI-CCR5 assay. The potencies were equivalent for the original construct and a variant with a longer linker, as observed with both pseudotype particles and infectious virions; by contrast, a construct with a linker too short to enable simultaneous binding of the sCD4 and 17b SCFv moieties was much less effective. sCD4-17b displayed potent neutralizing activity against 100% of nearly 4 dozen HIV-1 primary isolates from diverse genetic subtypes (clades A, B, C, D, F, and circulating recombinant forms AE and AG). The neutralization breadth and potency were superior to what have been reported for the broadly neutralizing monoclonal antibodies IgG b12, 2G12, 2F5, and 4E10. The activity of sCD4-17b was found to be similar against isogenic virus particles from infectious molecular clones derived either directly from the transfected producer cell line or after a single passage through PBMCs; this contrasted with the monoclonal antibodies, which were less potent against the PMBC-passaged viruses.ConclusionsThe results highlight the extremely potent and broad neutralizing activity of sCD4-17b against genetically diverse HIV-1 primary isolates. The bifunctional protein has potential applications for antiviral approaches to combat HIV infection.
Journal of Medical Primatology | 2009
Rosa R. Yu; Andrew Cheng; Laurel A. Lagenaur; Wenjun Huang; Deborah Weiss; Jim Treece; Brigitte E Sanders-Beer; Dean H. Hamer; Peter P. Lee; Qiang Xu; Yang Liu
Background We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates.
PLOS ONE | 2013
Beda Brichacek; Laurel A. Lagenaur; Peter P. Lee; David Venzon; Dean H. Hamer
Sexual transmission of human immunodeficiency virus type 1 (HIV-1) across the cervicovaginal mucosa in women is influenced by many factors including the microbiota and the presence of underlying inflammation. It is important that potential HIV preventative agents do not alter the mucosal environment in a way that enhances HIV acquisition. We examined the impact of a “live” microbicide on the vaginal mucosal environment in a rhesus macaque repeated vaginal simian-HIV (SHIVSF162P3) challenge model. The microbicide contained a human vaginal Lactobacillus jensenii expressing the HIV-1 entry inhibitor, modified Cyanovirin-N (mCV-N), and henceforth called LB-mCV-N. Macaques were colonized vaginally each week with LB-mCV-N and sampled six days after colonization for culturable bacteria, pH and cervical-vaginal cytokines during the duration of the six-week study. We show that macaques that retained the engineered LB-mCV-N strain in their vaginal microbiota, during SHIV challenge, had lower pH, when colonization levels were higher, and had no evidence of inflammatory cytokines. Indeed, Interleukin-13, a mediator of inflammation, was detected less often in LB-mCV-N colonized macaques than in controls and we found higher levels of Interleukin 1 receptor antagonist (IL-1RA) in LB-mCV-N colonized macaques during the SHIV challenge period. We noted an inverse correlation between levels of mucosal IL-1RA and peak plasma viral load, thus higher IL-1RA correlated with lower viral load in LB-mCV-N treated macaques. These data support the use of LB-mCV-N as a safe “live” microbicide and suggest that lactobacilli themselves may positively impact the mucosal environment.
Current HIV Research | 2014
Barna Dey; Laurel A. Lagenaur; Paolo Lusso
Although the development of a protective vaccine remains the most effective strategy for the global control of HIV/AIDS, another practical form of medical intervention would be a microbicide capable of preventing HIV-1 transmission at the mucosal level. A broad spectrum of antiviral molecules have demonstrated in vitro efficacy in proofof- principle studies, and a selected few have already been tested in pre-clinical and clinical microbicide trials. Nevertheless, major hurdles remain to be overcome and there is still much uncertainty about the choice of inhibitors, formulations and administration vehicles for obtaining a safe and effective microbicide. A special category of HIV-1 microbicides are those based on proteins or peptides that interfere with the earliest steps in the viral infectious cycle. Besides a high degree of target specificity and a limited, if any, systemic absorption, proteinbased microbicides offer the unique advantage of being suitable to in vivo expression by engineered bacteria or viral vectors, which might ensure prolonged protection without the need for planned, intercourse-coordinated application. In this respect, vaginal or rectal microbiota such as Lactobacillus spp. represent ideal expression systems as they would not only produce the inhibitor of choice at the mucosal surface, but also easily blend within the resident microflora and offer additional valuable homeostatic effects. In this article, we review the current state of the art on protein-based microbicides.
PLOS ONE | 2015
Laurel A. Lagenaur; Iwona Swedek; Peter P. Lee; Thomas Parks
MucoCept is a biotherapeutic for prevention of HIV-1 infection in women and contains a human, vaginal Lactobacillus jensenii that has been genetically enhanced to express the HIV-1 entry inhibitor, modified cyanovirin-N (mCV-N). The objective of this study was to develop a solid vaginal dosage form that supports sustained vaginal colonization of the MucoCept Lactobacillus at levels previously shown, with freshly prepared cultures, to protect macaques from SHIV infection and to test this formulation in a macaque vaginal colonization model. Vaginally disintegrating tablets were prepared by lyophilizing the formulated bacteria in tablet-shaped molds, then packaging in foil pouches with desiccant. Disintegration time, potency and stability of the tablets were assessed. For colonization, non-synchronized macaques were dosed vaginally with either one tablet or five tablets delivered over five days. Vaginal samples were obtained at three, 14, and 21 days post-dosing and cultured to determine Lactobacillus colonization levels. To confirm identity of the MucoCept Lactobacillus strain, genomic DNA was extracted from samples on days 14 and 21 and a strain-specific PCR was performed. Supernatants from bacteria were tested for the presence of the mCV-N protein by Western blot. The tablets were easy to handle, disintegrated within two minutes, potent (5.7x1011 CFU/g), and stable at 4°C and 25°C. Vaginal administration of the tablets to macaques resulted in colonization of the MucoCept Lactobacillus in 66% of macaques at 14 days post-dosing and 83% after 21 days. There was no significant difference in colonization levels for the one or five tablet dosing regimens (p=0.88 Day 14, p=0.99 Day 21). Strain-specific PCR confirmed the presence of the bacteria even in culture-negative macaques. Finally, the presence of mCV-N protein was confirmed by Western blot analysis using a specific anti-mCV-N antibody.
Research in Microbiology | 2011
Laurel A. Lagenaur; Peter P. Lee; Dean H. Hamer; Brigitte E Sanders-Beer
The vaginal microbiome, which harbors beneficial Lactobacillus strains, is believed to be a major host defense mechanism for preventing infections of the urogenital tract. It has been suggested that the gastrointestinal tract serves as a reservoir for lactobacilli that colonize the vagina. Using rhesus macaques, we examined whether oral delivery of human vaginal Lactobacillus jensenii 1153-1646, a GusA-producing strain, would result in colonization of the rectum and the vagina. Lactobacilli were identified from the vagina tracts of three macaques on the basis of β-glucuronidase enzyme production, 16S rRNA gene sequence and DNA homology using a repetitive sequence-based polymerase chain reaction.