Laurel A. Schaider
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurel A. Schaider.
Science of The Total Environment | 2014
Laurel A. Schaider; Ruthann A. Rudel; Janet M. Ackerman; Sarah Dunagan; Julia Green Brody
Approximately 40% of U.S. residents rely on groundwater as a source of drinking water. Groundwater, especially unconfined sand and gravel aquifers, is vulnerable to contamination from septic systems and infiltration of wastewater treatment plant effluent. In this study, we characterized concentrations of pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds (OWCs) in the unconfined sand and gravel aquifer of Cape Cod, Massachusetts, USA, where septic systems are prevalent. Raw water samples from 20 public drinking water supply wells on Cape Cod were tested for 92 OWCs, as well as surrogates of wastewater impact. Fifteen of 20 wells contained at least one OWC; the two most frequently-detected chemicals were sulfamethoxazole (antibiotic) and perfluorooctane sulfonate (perfluorosurfactant). Maximum concentrations of sulfamethoxazole (113 ng/L) and the anticonvulsant phenytoin (66 ng/L) matched or exceeded maximum reported concentrations in other U.S. public drinking water sources. The sum of pharmaceutical concentrations and the number of detected chemicals were both significantly correlated with nitrate, boron, and extent of unsewered residential and commercial development within 500 m, indicating that wastewater surrogates can be useful for identifying wells most likely to contain OWCs. Septic systems appear to be the primary source of OWCs in Cape Cod groundwater, although wastewater treatment plants and other sources were potential contributors to several wells. These results show that drinking water supplies in unconfined aquifers where septic systems are prevalent may be among the most vulnerable to OWCs. The presence of mixtures of OWCs in drinking water raises human health concerns; a full evaluation of potential risks is limited by a lack of health-based guidelines and toxicity assessments.
Pediatrics | 2010
Cristiane Gurgel Lin; Laurel A. Schaider; Daniel J. Brabander; Alan Woolf
BACKGROUND: Significant lead poisoning has been associated with imported nonpaint products. OBJECTIVES: To describe cases of pediatric lead intoxication from imported Indian spices and cultural powders, determine lead concentrations in these products, and predict effects of ingestion on pediatric blood lead levels (BLLs). PATIENTS AND METHODS: Cases and case-study information were obtained from patients followed by the Pediatric Environmental Health Center (Childrens Hospital Boston). Imported spices (n = 86) and cultural powders (n = 71) were analyzed for lead by using x-ray fluorescence spectroscopy. The simple bioaccessibility extraction test was used to estimate oral bioavailability. The integrated exposure uptake biokinetic model for lead in children was used to predict population-wide geometric mean BLLs and the probability of elevated BLLs (>10 μg/dL). RESULTS: Four cases of pediatric lead poisoning from Indian spices or cultural powders are described. Twenty-two of 86 spices and foodstuff products contained >1 μg/g lead (for these 22 samples, mean: 2.6 μg/g [95% confidence interval: 1.9–3.3]; maximum: 7.6 μg/g). Forty-six of 71 cultural products contained >1 μg/g lead (for 43 of these samples, mean: 8.0 μg/g [95% confidence interval: 5.2–10.8]; maximum: 41.4 μg/g). Three sindoor products contained >47% lead. With a fixed ingestion of 5 μg/day and 50% bioavailability, predicted geometric mean BLLs for children aged 0 to 4 years increased from 3.2 to 4.1 μg/dL, and predicted prevalence of children with a BLL of >10 μg/dL increased more than threefold (0.8%–2.8%). CONCLUSIONS: Chronic exposure to spices and cultural powders may cause elevated BLLs. A majority of cultural products contained >1 μg/g lead, and some sindoor contained extremely high bioaccessible lead levels. Clinicians should routinely screen for exposure to these products.
Plant and Soil | 2006
Laurel A. Schaider; David R. Parker; David L. Sedlak
Direct plant uptake of metals bound to chelating agents has important implications for metal uptake and the free-ion activity model. Uptake of hydrophilic solutes such as metal–EDTA complexes is believed to occur via bypass apoplastic flow, but many questions remain about the relative importance and selectivity of this pathway. In this study, Brassica juncea (Indian mustard) plants grown in solution- and sand-culture conditions were exposed to metal–EDTA complexes and to PTS, a hydrophilic fluorescent dye previously used as a tracer of apoplastic flow. The results suggest that there are two general phases of solute uptake. Under normal conditions, xylem sap solute concentrations are relatively low (i.e., <0.5% of concentration in solution) and there is a high degree of selectivity among different solutes, while under conditions of stress, xylem sap concentrations are significantly higher (i.e., >3% of concentration in solution) and the selectivity among solutes is less. In healthy plants, xylem sap metal–EDTA concentrations were generally an order of magnitude higher than those of PTS and differences among complexes were observed, with CdEDTA2− exhibiting slightly higher xylem sap concentrations than PbEDTA2− or FeEDTA−. Metal–EDTA complexes were found to dominate xylem sap metal speciation and the fraction of metal in xylem sap present as metal–EDTA was greater for non-nutrient metals (Pb, Cd) than for the nutrient metal Fe. Despite differences in root morphology between plants grown under solution- and sand-culture conditions, uptake of solutes was similar under both sets of growth conditions.
Journal of Exposure Science and Environmental Epidemiology | 2011
Ami R. Zota; Laurel A. Schaider; Adrienne S. Ettinger; Robert O. Wright; James P. Shine; John D. Spengler
Children living near hazardous waste sites may be exposed to environmental contaminants, yet few studies have conducted multi-media exposure assessments, including residential environments where children spend most of their time. We sampled yard soil, house dust, and particulate matter with aerodynamic diameter <2.5 in 59 homes of young children near an abandoned mining area and analyzed samples for lead (Pb), zinc (Zn), cadmium (Cd), arsenic (As), and manganese (Mn). In over half of the homes, dust concentrations of Pb, Zn, Cd, and As were higher than those in soil. Proximity to mine waste (chat) piles and the presence of chat in the driveway significantly predicted dust metals levels. Homes with both chat sources had Pb, Zn, Cd, and As dust levels two to three times higher than homes with no known chat sources after controlling for other sources. In contrast, Mn concentrations in dust were consistently lower than in soil and were not associated with chat sources. Mn dust concentrations were predicted by soil concentrations and occupant density. These findings suggest that nearby outdoor sources of metal contaminants from mine waste may migrate indoors. Populations farther away from the mining site may also be exposed if secondary uses of chat are in close proximity to the home.
Science of The Total Environment | 2014
Laurel A. Schaider; David B. Senn; Emily R. Estes; Daniel J. Brabander; James P. Shine
Heavy metal contamination of surface waters at mining sites often involves complex interactions of multiple sources and varying biogeochemical conditions. We compared surface and subsurface metal loading from mine waste pile runoff and mine drainage discharge and characterized the influence of iron oxides on metal fate along a 0.9-km stretch of Tar Creek (Oklahoma, USA), which drains an abandoned Zn/Pb mining area. The importance of each source varied by metal; mine waste pile runoff contributed 70% of Cd, while mine drainage contributed 90% of Pb, and both sources contributed similarly to Zn loading. Subsurface inputs accounted for 40% of flow and 40-70% of metal loading along this stretch. Streambed iron oxide aggregate material contained highly elevated Zn (up to 27,000 μg g(-1)), Pb (up to 550 μg g(-1)) and Cd (up to 200 μg g(-1)) and was characterized as a heterogeneous mixture of iron oxides, fine-grain mine waste, and organic material. Sequential extractions confirmed preferential sequestration of Pb by iron oxides, as well as substantial concentrations of Zn and Cd in iron oxide fractions, with additional accumulation of Zn, Pb, and Cd during downstream transport. Comparisons with historical data show that while metal concentrations in mine drainage have decreased by more than an order of magnitude in recent decades, the chemical composition of mine waste pile runoff has remained relatively constant, indicating less attenuation and increased relative importance of pile runoff. These results highlight the importance of monitoring temporal changes at contaminated sites associated with evolving speciation and simultaneously addressing surface and subsurface contamination from both mine waste piles and mine drainage.
Science of The Total Environment | 2016
Laurel A. Schaider; Janet M. Ackerman; Ruthann A. Rudel
Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study.
Environmental Science and Technology Letters | 2017
Laurel A. Schaider; Simona A. Balan; Arlene Blum; David Q. Andrews; Mark J. Strynar; Margaret Dickinson; David Lunderberg; Johnsie R. Lang; Graham F. Peaslee
Per- and polyfluoroalkyl substances (PFASs) are highly persistent synthetic chemicals, some of which have been associated with cancer, developmental toxicity, immunotoxicity, and other health effects. PFASs in grease-resistant food packaging can leach into food and increase dietary exposure. We collected ~400 samples of food contact papers, paperboard containers, and beverage containers from fast food restaurants throughout the United States and measured total fluorine using particle-induced γ-ray emission (PIGE) spectroscopy. PIGE can rapidly and inexpensively measure total fluorine in solid-phase samples. We found that 46% of food contact papers and 20% of paperboard samples contained detectable fluorine (>16 nmol/cm2). Liquid chromatography/high-resolution mass spectrometry analysis of a subset of 20 samples found perfluorocarboxylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted analysis). The total peak area for PFASs was higher in 70% of samples (10 of 14) with a total fluorine level of >200 nmol/cm2 compared to six samples with a total fluorine level of <16 nmol/cm2. Samples with high total fluorine levels but low levels of measured PFASs may contain volatile PFASs, PFAS polymers, newer replacement PFASs, or other fluorinated compounds. The prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS exposure and environmental contamination during production and disposal.
Journal of The Air & Waste Management Association | 2009
Ami R. Zota; Robert D. Willis; Rebecca Jim; Gary A. Norris; James P. Shine; Rachelle M. Duvall; Laurel A. Schaider; John D. Spengler
Abstract Atmospheric dispersion of particles from mine waste is potentially an important route of human exposure to metals in communities close to active and abandoned mining areas. This study assessed sources of mass and metal concentrations in two size fractions of respirable particles using positive matrix factorization (U.S. Environmental Protection Agency [EPA] PMF 3.0). Weekly integrated samples of particulate matter (PM) 10 µm in aerodynamic diameter or less (PM10) and fine PM (PM2.5, or PM <2.5 µm in aerodynamic diameter) were collected at three monitoring sites, varying distances (0.5–20 km) from mine waste piles, for 58 consecutive weeks in a former lead (Pb) and zinc (Zn) mining region. Mean mass concentrations varied significantly across sites for coarse PM (PM10–PM2.5) but not PM2.5 particles. Concentrations of Pb and Zn significantly decreased with increasing distance from the mine waste piles in PM10–PM2.5 (P < 0.0001) and PM2.5 (P < 0.0005) fractions. Source apportionment analyses deduced five sources contributing to PM2.5 (mobile source combustion, secondary sulfates, mine waste, crustal/soil, and a source rich in calcium [Ca]) and three sources for the coarse fraction (mine waste, crustal/soil, and a Ca-rich source). In the PM2.5 fraction, mine waste contributed 1–6% of the overall mass, 40% of Pb, and 63% of Zn. Mine waste impacts were more apparent in the PM10–PM2.5 fraction and contributed 4–39% of total mass, 88% of Pb, and 97% of Zn. Percent contribution of mine waste varied significantly across sites (P < 0.0001) for both size fractions, with highest contributions in the site closest to the mine waste piles. Seasonality, wind direction, and concentrations of the Ca-rich source were also associated with levels of ambient aerosols from the mine waste source. Scanning electron microscopy results indicated that the PMF-identified mine waste source is mainly composed of Zn-Pb agglomerates on crustal particles in the PM10–PM2.5 fraction. In conclusion, the differential impacts of mine waste on respirable particles by size fraction and location should be considered in future exposure evaluations.
Environmental Research | 2015
Zhao Dong; Rebecca Jim; Earl Hatley; Ann S.N. Backus; James P. Shine; John D. Spengler; Laurel A. Schaider
Methylmercury (MeHg) exposure through fish consumption is a worldwide health concern. Saltwater fish account for most dietary MeHg exposure in the general U.S. population, but less is known about seasonal variations in MeHg exposure and fish consumption among millions of freshwater anglers. This longitudinal study examined associations between MeHg exposure and fish consumption in a rural, low-income population relying on a freshwater reservoir (Oklahoma, USA) for recreational and subsistence fishing. We interviewed 151 participants, primarily anglers and their families, seasonally for one year using 90-day recall food frequency questionnaires to assess general and species-specific fish consumption, and tested hair biomarker samples for total mercury (THg hair). Mean THg hair was 0.27 μg/g (n=595, range: 0.0044-3.1 μg/g), with 4% of participants above U.S. EPAs guideline for women of childbearing age and children. Mean fish consumption was 58 g/d (95% CI: 49-67 g/d), within the range previously reported for recreational freshwater anglers and above the national average. Unlike the general U.S. population, freshwater species contributed the majority of fish consumption (69%) and dietary Hg exposure (60%) among participants, despite relatively low THg in local fish. THg hair increased with fish consumption, age, and education, and was higher among male participants and the lowest in winter. Our results suggest that future studies of anglers should consider seasonality in fish consumption and MeHg exposure and include household members who share their catch. Efforts to evaluate benefits of reducing Hg emissions should consider dietary patterns among consumers of fish from local freshwater bodies.
Journal of Geophysical Research | 2009
B. Liu; Laurel A. Schaider; Robert P. Mason; Michael S. Bank; N. N. Rabalais; Peter W. Swarzenski; James P. Shine; T. Hollweg; David B. Senn
A 0 2), 210 Pb levels are consistent with the episodic deposition of >10 cm of sediments. These surface sediments (0–10 cm) at A 0 2 had the highest %MeHg of all stations and all dates, suggesting that the disturbance resulted initially in increased net methylation. While the observed disturbances elsewhere could not in all cases be definitively linked to hurricane activities, the substantial thickness of deposits (>10 cm) at multiple sites is consistent with a major event, and the similarity in the deposits’ chemical fingerprint across all impacted sites suggests similar sources or processes. We estimate that the two hurricanes redistributed approximately 5 times the annual Hg input from the Mississippi-Atchafalaya River system and atmospheric deposition. These observations highlight the need to consider the effects of major disturbances on the biogeochemical cycling of Hg in coastal systems.
Collaboration
Dive into the Laurel A. Schaider's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputs