Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy N. Rabalais is active.

Publication


Featured researches published by Nancy N. Rabalais.


AMBIO: A Journal of the Human Environment | 2002

Nitrogen in Aquatic Ecosystems

Nancy N. Rabalais

Abstract Aquatic ecosystems respond variably to nutrient enrichment and altered nutrient ratios, along a continuum from fresh water through estuarine, coastal, and marine systems. Although phosphorus is considered the limiting nutrient for phytoplankton production in freshwater systems, the effects of atmospheric nitrogen and its contribution to acidification of fresh waters can be detrimental. Within the estuarine to coastal continuum, multiple nutrient limitations occur among nitrogen, phosphorus, and silicon along the salinity gradient and by season, but nitrogen is generally considered the primary limiting nutrient for phytoplankton biomass accumulation. There are well-established, but nonlinear, positive relationships among nitrogen and phosphorus flux, phytoplankton primary production, and fisheries yield. There are thresholds, however, where the load of nutrients to estuarine, coastal and marine systems exceeds the capacity for assimilation of nutrient-enhanced production, and water-quality degradation occurs. Impacts can include noxious and toxic algal blooms, increased turbidity with a subsequent loss of submerged aquatic vegetation, oxygen deficiency, disruption of ecosystem functioning, loss of habitat, loss of biodiversity, shifts in food webs, and loss of harvestable fisheries.


Estuarine Coastal and Shelf Science | 1995

Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences

Dubravko Justic; Nancy N. Rabalais; R. Eugene Turner; Quay Dortch

We present an analysis of extensive nutrient data sets from two river-dominated coastal ecosystems, the northern Adriatic Sea and the northern Gulf of Mexico, demonstrating significant changes in surface nutrient ratios over a period of 30 years. The silicon:nitrogen ratios have decreased, indicating increased potential for silicon limitation. The nitrogen:phosphorus and the silicon:phosphorus ratios have also changed substantially, and the coastal nutrient structures have become more balanced and potentially less limiting for phytoplankton growth. It is likely that net phytoplankton productivity increased under these conditions and was accompanied by increasing bottom water hypoxia and major changes in community species composition. These findings support the hypothesis that increasing coastal eutrophication to date may be associated with stoichiometric nutrient balance, due to increasing potential for silicon limitation and decreasing potential for nitrogen and phosphorus limitation. On a worldwide basis, coastal ecosystems adjacent to rivers influenced by anthropogenic nutrient loads may experience similar alterations.


BioScience | 2003

Linking Landscape and Water Quality in the Mississippi River Basin for 200 Years

R. Eugene Turner; Nancy N. Rabalais

Abstract Two centuries of land use in the Mississippi River watershed are reflected in the water quality of its streams and in the continental shelf ecosystem receiving its discharge. The most recent influence on nutrient loading—intense and widespread farming and especially fertilizer use—has had a more significant effect on water quality than has land drainage or the conversion of native vegetation to cropland and grazing pastures. The 200-year record of nutrient loading to offshore water is reflected in the paleoreconstructed record of plankton in dated sediments. This record illustrates that the development of fair, sustained management of inland ecosystems is linked to the management of offshore systems. Land use in this fully occupied watershed is under the strong influence of national policies affecting all aspects of the human ecosphere. These policies can be modified for better or worse, but water quality will probably change only gradually because of the strong buffering capacity of the soil ecosystem.


Archive | 2001

Coastal Hypoxia: consequences for living resources and ecosystems

Nancy N. Rabalais; R. Eugene Turner

Published by the American Geophysical Union as part of the Coastal and Estuarine Studies, Volume 58. Hypoxia is a condition that occurs when dissolved oxygen falls below the level necessary to sustain most animal life. In U.S. coastal waters, and in the entire western Atlantic, we find the largest hypoxic zone in the northern Gulf of Mexico on the Louisiana/Texas continental shelf. The area affected, which is about the size of the state of New Jersey at its maximal extent, has increased since regular measurements began in 1985. Sediment cores from the hypoxic zone also show that algal production and deposition, as well as oxygen stress, were much lower earlier in the 190Os and that significant increases occurred in the latter half of the twentieth century. We publish this book against the background of such measurements, and to review how the developing and expanding hypoxic zone has affected living resources on this continental shelf.


Estuaries and Coasts | 2007

Hypoxia in the Northern Gulf of Mexico: Does the Science Support the Plan to Reduce, Mitigate, and Control Hypoxia?

Nancy N. Rabalais; R.E. Turner; B.K. Sen Gupta; Donald F. Boesch; Piers Chapman; Michael C. Murrell

We update and reevaluate the scientific information on the distribution, history, and causes of continental shelf hypoxia that supports the 2001 Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001), incorporating data, publications, and research results produced since the 1999 integrated assessment. The metric of mid-summer hypoxic area on the LouisianaTexas shelf is an adequate and suitable measure for continued efforts to reduce nutrients loads from the Mississippi River and hypoxia in the northern Gulf of Mexico as outlined in the Action Plan. More frequent measurements of simple metrics (e.g., area and volume) from late spring through late summer would ensure that the metric is representative of the system in any given year and useful in a public discourse of conditions and causes. The long-term data on hypoxia, sources of nutrients, associated biological parameters, and paleoindicators continue to verify and strengthen the relationship between the nitratenitrogen load of the Mississippi River, the extent of hypoxia, and changes in the coastal ecosystem (eutrophication and worsening hypoxia). Multiple lines of evidence, some of them representing independent data sources, are consistent with the big picture pattern of increased eutrophication as a result of long-term nutrient increases that result in excess carbon production and accumulation and, ultimately, bottom water hypoxia. The additional findings arising since 1999 strengthen the science supporting the Action Plan that focuses on reducing nutrient loads, primarily nitrogen, through multiple actions to reduce the size of the hypoxic zone in the northern Gulf of Mexico.


Marine Pollution Bulletin | 1995

Stoichiometric nutrient balance and origin of coastal eutrophication

Dubravko Justic; Nancy N. Rabalais; R. Eugene Turner

Abstract We present here an analysis of the stoichiometry of dissolved nutrients in 10 large world rivers, Amazon, Changjiang, Huanghe, Mackenzie, Mississippi, Po, Rhine, Seine, Yukon and Zaire, and in two river-dominated coastal ecosystems prone to eutrophication, the northern Adriatic Sea and the northern Gulf of Mexico. Our analysis suggests that proportions of dissolved silica (Si), nitrogen (N) and phosphorous (P) in rivers carrying nutrients of anthropogenic origin, as well as in the coastal waters strongly influenced by those rivers, have changed historically in a way that now closely approximates the Redfield ratio (Si:N:P=16:16:1). It is likely that coastal phytoplankton productivity has increased under these favourable nutrient conditions and was accompanied by an increasing incidence of noxious phytoplankton blooms and bottom water hypoxia.


Biogeochemistry | 2003

Global patterns of dissolved N, P and Si in large rivers

R.E. Turner; Nancy N. Rabalais; Dubravko Justic; Quay Dortch

The concentration of dissolved inorganic nitrogen (DIN), dissolved nitrate-N, Total-N (TN), dissolved inorganic phosphate (DIP), total phosphorus (TP), dissolved silicate-Si (DSi) and their ratios in the worlds largest rivers are examined using a global data base that includes 37% of the earths watershed area and half its population. These data were compared to water quality in 42 subbasins of the relatively well-monitored Mississippi River basin (MRB) and of 82 small watersheds of the United States. The average total nitrogen concentration varies over three orders of magnitude among both world river watersheds and the MRB, and is primarily dependent on variations in dissolved nitrate concentration, rather than particulate or dissolved organic matter or ammonium. There is also a direct relationship between the DIN:DIP ratio and nitrate concentration. When nitrate-N exceeds 100 μg-at l−1, the DIN:DIP ratio is generally above the Redfield ratio (16:1), which implies phosphorus limitation of phytoplankton growth. Compared to nitrate, the among river variation in the DSi concentration is relatively small so that the DSi loading (mass/area/time) is largely controlled by runoff volume. The well-documented influence of human activities on dissolved inorganic nitrogen loading thus exceeds the influences arising from the great variability in soil types, climate and geography among these watersheds. The DSi:nitrate-N ratio is controlled primarily by nitrogen loading and is shown to be inversely correlated with an index of landscape development – the “City Lights” nighttime imagery. Increased nitrogen loading is thus driving the worlds largest rivers towards a higher DIN:DIP ratio and a lower DSi:DIN ratio. About 7.3 and 21 % of the worlds population lives in watersheds with a DSi:nitrate-N ratio near a 1:1 and 2:1 ratio, respectively. The empirical evidence is that this percentage will increase with further economic development. When the DSi:nitrate-N atomic ratio is near 1:1, aquatic food webs leading from diatoms (which require silicate) to fish may be compromised and the frequency or size of harmful or noxious algal blooms may increase. Used together, the DSi:nitrate-N ratio and nitrate-N concentration are useful and robust comparative indicators of eutrophication in large rivers. Finally, we estimate the riverine loading to the ocean for nitrate-N, TN, DIP, TP and DSi to be 16.2, 21, 2.6, 3.7 to 5.6, and 194 Tg yr−1, respectively.


Hydrobiologia | 2002

Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future

Nancy N. Rabalais; R. Eugene Turner; Quay Dortch; Dubravko Justic; Victor J. Bierman; William J. Wiseman

Nutrient over-enrichment in many areas around the world is having pervasive ecological effects on coastal ecosystems. These effects include reduced dissolved oxygen in aquatic systems and subsequent impacts on living resources. The largest zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic Ocean, is found in the northern Gulf of Mexico on the Louisiana/Texas continental shelf influenced by the freshwater discharge and nutrient load of the Mississippi River system. The mid-summer bottom areal extent of hypoxic waters (<2 mg 1−1 02) in 1985–1992 averaged 8000 to 9000 km2 but increased to up to 16000 to 20 700 km2 in 1993–2001. The Mississippi River system is the dominant source of fresh water and nutrients to the northern Gulf of Mexico. Mississippi River nutrient concentrations and loading to the adjacent continental shelf have changed in the last half of the 20th century. The average annual nitrate concentration doubled, and the mean silicate concentration was reduced by 50%. There is no doubt that the average concentration and flux of nitrogen (per unit volume discharge) increased from the 1950s to 1980s, especially in the spring. There is considerable evidence that nutrient-enhanced primary production in the northern Gulf of Mexico is causally related to the oxygen depletion in the lower water column. Evidence from long-term data sets and the sedimentary record demonstrate that historic increases in riverine dissolved inorganic nitrogen concentration and loads over the last 50 years are highly correlated with indicators of increased productivity in the overlying water column, i.e. eutrophication of the continental shelf waters, and subsequent worsening of oxygen stress in the bottom waters. Evidence associates increased coastal ocean productivity and worsening oxygen depletion with changes in landscape use and nutrient management that resulted in nutrient enrichment of receiving waters. A steady-state model, calibrated to different observed summer conditions, was used to assess the response of the system to reductions in nutrient inputs. A reduction in surface layer chlorophyll and an increase in lower layer dissolved oxygen resulted from a reduction of either nitrogen or phosphorus loading, with the response being greater for nitrogen reductions.


Biogeochemistry | 1999

The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: Current conditions and projected changes

John A. Downing; M. McClain; R. Twilley; John M. Melack; James J. Elser; Nancy N. Rabalais; William M. Lewis; R.E. Turner; Jorge E. Corredor; Doris Soto; A. Yanez-Arancibia; J. A. Kopaska; Robert W. Howarth

Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, Nand light-limited zones around river deltas, a switch from Pto N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the


Geology | 1996

Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers

Barun K. Sen Gupta; R. Eugene Turner; Nancy N. Rabalais

A strong spring and summer oxygen depletion is induced in nearshore bottom waters of the Louisiana continental shelf by density stratification and by the carbon flux from phytoplankton production, which, in turn, is related to the nutrient load of the Mississippi and Atchafalaya rivers. In an attempt to read the historical record of this shelf hypoxia during the past two centuries, we compared the stratigraphic signals of benthic foraminifera (as reflected in a relative-dominance index for two common species of Ammonia and Elphidium ) in 210 Pb-dated cores, and we found evidence of an overall rise in oxygen stress (in intensity or duration), especially in the past 100 yr. This implies a progressive increase in the influence of river-borne nutrients, particularly anthropogenically influenced nitrates. Judging by our results, foraminiferal indices based on appropriate species ratios should prove useful in testing hypotheses about long-term environmental stresses, including eutrophication and paleohypoxia, on other marine shelves.

Collaboration


Dive into the Nancy N. Rabalais's collaboration.

Top Co-Authors

Avatar

R. Eugene Turner

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Dubravko Justic

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

R.E. Turner

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Quay Dortch

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Diaz

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Jing Zhang

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald F. Boesch

University of Maryland Center for Environmental Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge