Laurel J. Gershwin
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurel J. Gershwin.
Vaccine | 1998
Laurel J. Gershwin; Edward S. Schelegle; Robert A. Gunther; Mark L. Anderson; Amelia R. Woolums; Danielle R. Larochelle; Gabrielle A. Boyle; Kathleen E. Friebertshauser; Randall S. Singer
A critical issue has been the observation that vaccination of children with a formalin-inactivated respiratory syncytial virus (RSV) vaccine is associated with disease enhancement. We have taken advantage of bovine RSV and our experience with this disease in calves to develop a natural model that parallels human disease. Using formalin-inactivated bovine RSV vaccine calves were either sham-vaccinated/infected, vaccinated/infected, or vaccinated/sham-infected and their clinical signs, pulmonary function, and histological lung lesions quantitatively scored. Interestingly there was significantly greater disease in vaccinated/infected calves and histological lesions in calves were similar to those of affected children. Finally, we note that vaccination did not induce neutralizing antibodies, but IgG antibodies were detected by ELISA. Our model of RSV enhanced disease is important because it provides quantifiable evidence of disease severity that can be applied to evaluate the mechanisms of immunopathology and the safety of candidate RSV vaccines.
American Journal of Pathology | 2001
Edward S. Schelegle; Laurel J. Gershwin; Lisa A. Miller; Michelle V. Fanucchi; Laura S. Van Winkle; Joan P. Gerriets; William F. Walby; Amanda M. Omlor; Alan R. Buckpitt; Brian K. Tarkington; Viviana Wong; Jesse P. Joad; Kent B. Pinkerton; Reen Wu; Michael J. Evans; Dallas M. Hyde; Charles G. Plopper
To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4(+) lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA.
Toxicology and Applied Pharmacology | 2003
Edward S. Schelegle; Lisa A. Miller; Laurel J. Gershwin; Michelle V. Fanucchi; Laura S. Van Winkle; Joan E. Gerriets; William F. Walby; Valerie Mitchell; Brian K. Tarkington; Viviana Wong; Gregory L. Baker; L. M. Pantle; Jesse P. Joad; Kent E. Pinkerton; Reen Wu; Michael J. Evans; Dallas M. Hyde; Charles G. Plopper
Twenty-four infant rhesus monkeys (30 days old) were exposed to 11 episodes of filtered air (FA), house dust mite allergen aerosol (HDMA), ozone (O3), or HDMA + O3 (5 days each followed by 9 days of FA). Ozone was delivered for 8 h/day at 0.5 ppm. Twelve of the monkeys were sensitized to house dust mite allergen (Dermatophagoides farinae) at ages 14 and 28 days by subcutaneous inoculation (SQ) of HDMA in alum and intraperitoneal injection of heat-killed Bordetella pertussis cells. Sensitized monkeys were exposed to HDMA aerosol for 2 h/day on days 3-5 of either FA (n = 6) or O3 (n = 6) exposure. Nonsensitized monkeys were exposed to either FA (n = 6) or O3 (n = 6). During the exposure regimen, parameters of allergy (i.e., serum IgE, histamine, and eosinophilia), airways resistance, reactivity, and structural remodeling were evaluated. Eleven repeated 5-day cycles of inhaling 0.5 ppm ozone over a 6-month period had only mild effects on the airways of nonsensitized infant rhesus monkeys. Similarly, the repeated inhalation of HDMA by HDMA-sensitized infant monkeys resulted in only mild airway effects, with the exception of a marked increase in proximal airway and terminal bronchiole content of eosinophils. In contrast, the combined cyclic inhalation of ozone and HDMA by HDMA sensitized infants monkeys resulted in a marked increase in serum IgE, serum histamine, and airways eosinophilia. Furthermore, combined cyclic inhalation of ozone and HDMA resulted in even greater alterations in airway structure and content that were associated with a significant elevation in baseline airways resistance and reactivity. These results suggest that ozone can amplify the allergic and structural remodeling effects of HDMA sensitization and inhalation.
International Archives of Allergy and Immunology | 2004
Carol R. Reinero; Kendra C. Decile; Roy D. Berghaus; Kurt J. Williams; Christian M. Leutenegger; William F. Walby; Edward S. Schelegle; Dallas M. Hyde; Laurel J. Gershwin
Background: Animal models are used to mimic human asthma, however, not all models replicate the major characteristics of the human disease. Spontaneous development of asthma with hallmark features similar to humans has been documented to occur with relative frequency in only one animal species, the cat. We hypothesized that we could develop an experimental model of feline asthma using clinically relevant aeroallergens identified from cases of naturally developing feline asthma, and characterize immunologic, physiologic, and pathologic changes over 1 year. Methods: House dust mite (HDMA) and Bermuda grass (BGA) allergen were selected by screening 10 privately owned pet cats with spontaneous asthma using a serum allergen-specific IgE ELISA. Parenteral sensitization and aerosol challenges were used to replicate the naturally developing disease in research cats. The asthmatic phenotype was characterized using intradermal skin testing, serum allergen-specific IgE ELISA, serum and bronchoalveolar lavage fluid (BALF) IgG and IgA ELISAs, airway hyperresponsiveness testing, BALF cytology, cytokine profiles using TaqMan PCR, and histopathologic evaluation. Results: Sensitization with HDMA or BGA in cats led to allergen-specific IgE production, allergen-specific serum and BALF IgG and IgA production, airway hyperreactivity, airway eosinophilia, an acute T helper 2 cytokine profile in peripheral blood mononuclear cells and BALF cells, and histologic evidence of airway remodeling. Conclusions: Using clinically relevant aeroallergens to sensitize and challenge the cat provides an additional animal model to study the immunopathophysiologic mechanisms of allergic asthma. Chronic exposure to allergen in the cat leads to a variety of immunologic, physiologic, and pathologic changes that mimic the features seen in human asthma.
Veterinary Parasitology | 1990
M. J. Stear; Hetzel Dj; S.C. Brown; Laurel J. Gershwin; M.J. Mackinnon; F.W. Nicholas
Natural infestations of the cattle tick Boophilus microplus, levels of the buffalo fly Haematobia irritants exigua and faecal nematode egg concentrations (Bunostomum phlebotomum, Cooperia spp., Haemonchus placei, Oesophagostomum radiatum and Trichostrongylus axei) were assessed in 221 Belmont Red calves during the post-weaning period, when the animals were between 9 and 18 months of age. In addition, the 98 males of this group were challenged with B. microplus larvae on two separate occasions. There were strong positive correlations among replicate assessments of the same parasite. Field tick counts and tick counts following deliberate challenge were strongly correlated, and both showed negative correlations with post-weaning weight gain. There was a weak positive correlation between buffalo fly counts and post-weaning weight gain. There was a negative correlation between total worm egg count and weight gain. Among worm species, only the effect of O. radiatum on weight gain was significant. Cattle with bovine major histocompatibility (BoLA) antigens W6.1 and W7 had significantly fewer ticks than cattle lacking these antigens. Cattle with BoLA antigens W7 and CA36 had lower concentrations of nematode eggs in their faeces than cattle lacking these BoLA antigens.
Toxicologic Pathology | 2007
Charles G. Plopper; Suzette Smiley-Jewell; Lisa A. Miller; Michelle V. Fanucchi; Michael J. Evans; Alan R. Buckpitt; Mark Avdalovic; Laurel J. Gershwin; Jesse P. Joad; Radhika Kajekar; Shawnessy D. Larson; Kent E. Pinkerton; Laura S. Van Winkle; Edward S. Schelegle; Emily M. Pieczarka; Reen Wu; Dalla M. Hyde
The recent, dramatic increase in the incidence of childhood asthma suggests a role for environmental contaminants in the promotion of interactions between allergens and the respiratory system of young children. To establish whether exposure to an environmental stressor, ozone (O3), and an allergen, house dust mite (HDMA), during early childhood promotes remodeling of the epithelial-mesenchymal trophic unit (EMTU) of the tracheobronchial airway wall by altering postnatal development, infant rhesus monkeys were exposed to cyclic episodes of filtered air (FA), HDMA, O3, or HDMA plus O3. The following alterations in the EMTU were found after exposure to HDMA, O3, or HDMA plus O3: (1) reduced airway number; (2) hyperplasia of bronchial epithelium; (3) increased mucous cells; (4) shifts in distal airway smooth muscle bundle orientation and abundance to favor hyperreactivity; (5) interrupted postnatal basement membrane zone differentiation; (6) modified epithelial nerve fiber distribution; and (7) reorganization of the airway vascular and immune system. Conclusions: cyclic challenge of infants to toxic stress during postnatal lung development modifies the EMTU. This exacerbates the allergen response to favor development of intermittent airway obstruction associated with wheeze. And, exposure of infants during early postnatal lung development initiates compromises in airway growth and development that persist or worsen as growth continues, even with cessation of exposure.
International Archives of Allergy and Immunology | 1981
Laurel J. Gershwin; John W. Osebold; Yuan Chung Zee
Cells containing immunoglobulin E (IgE) were enumerated and their location in mouse lungs was determined by direct immunofluorescence. Lungs were studied from mice that had been immunized with aerosolized ovalbumin as well as from normal mice and from mice that were exposed to ozone (0.5 or 0.8 ppm) prior to receiving aerosolized antigen. In addition, some mice were immunized intraperitoneally with ovalbumin precipitated in alum. IgE-containing cells were primarily airway-related in normal mice and in mice immunized by the intraperitoneal route. Lungs from aerosol-immunized, and aerosol-immunized ozone-exposed mice showed a more disseminated distribution of IgE-containing cells. Fluorescent cells were counted and numbers were expressed as total cells per square millimeter of lung tissue and as airway-associated cells per millimeter of airway. Total IgE cells increased 9.4-fold in mice that received aerosolized ovalbumin as compared to normal mice. When ozone exposure was added to the effects from aerosolized ovalbumin, the increase of IgE cells over normal was 34.2-fold. IgE cell counts correlated well with anaphylactic sensitivity to intravenous challenge with ovalbumin. The observed enhancement of allergic sensitization by ozone exposure has important implications for human health.
Experimental Biology and Medicine | 1988
John W. Osebold; Yuan Chung Zee; Laurel J. Gershwin
Abstract Inhaled ozone was found to exert an enhancing effect for allergic lung sensitization when mice contacted an aerosolized allergen. The animals were exposed to ozone concentrations of 0.24, 0.16, 0.13, and 0.10 ppm. After 4 days of continuous ozone exposure, the mice had allergen contact from an aerosolized solution of ovalbumin. The animals were then maintained in ambient air for several days before the cycle of ozone and aerosolized allergen was repeated over four allergen contact cycles. Mice were rested in ambient air for a week after the last allergen contact, and they were then tested for allergic sensitization by the intravenous injection of 2 mg of ovalbumin to induce anaphylactic shock in allergic individuals. The control groups of mice were maintained in ambient air throughout the experiment, but they experienced identical allergen contact with the ozone-exposed mice. The phenomenon of allergic enhancement from ozone inhalation was detected at 0.24, 0.16, and 0.13 ppm of ozone. The enhancing effect disappeared at 0.10 ppm of ozone. The study indicated a potential for increasing the number of allergically sensitized individuals when various allergens are inhaled during periods of high ozone exposure with the consequent adverse changes on respiratory membranes. The significance to human health of the allergic enhancement phenomenon by ozone needs investigation.
Clinical & Experimental Allergy | 2005
Lisa A. Miller; S. D. Hurst; Robert L. Coffman; Nancy K. Tyler; Mary Y. Stovall; D. L. Chou; Lei Putney; Laurel J. Gershwin; Edward S. Schelegle; Charles G. Plopper; Dallas M. Hyde
Background Accumulation of immune cell populations and their cytokine products within tracheobronchial airways contributes to the pathogenesis of allergic asthma. It has been postulated that peripheral regions of the lung play a more significant role than proximal airways with regard to inflammatory events and airflow obstruction.
Clinical & Experimental Allergy | 2004
Mai-Uyen Tran; Alison J. Weir; Michelle V. Fanucchi; A. E. Rodriguez; L. M. Pantle; Suzette Smiley-Jewell; L. S. Van Winkle; Michael J. Evans; Lisa A. Miller; Edward S. Schelegle; Laurel J. Gershwin; Dallas M. Hyde; Charles G. Plopper
Background Airway smooth muscle hypertrophy is closely associated with the pathophysiology of hyper‐reactive airways in allergic asthma.