Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle V. Fanucchi is active.

Publication


Featured researches published by Michelle V. Fanucchi.


American Journal of Pathology | 2001

Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae)

Edward S. Schelegle; Laurel J. Gershwin; Lisa A. Miller; Michelle V. Fanucchi; Laura S. Van Winkle; Joan P. Gerriets; William F. Walby; Amanda M. Omlor; Alan R. Buckpitt; Brian K. Tarkington; Viviana Wong; Jesse P. Joad; Kent B. Pinkerton; Reen Wu; Michael J. Evans; Dallas M. Hyde; Charles G. Plopper

To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4(+) lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA.


Experimental Lung Research | 2001

Cellular and molecular characteristics of basal cells in airway epithelium

Michael J. Evans; Laura S. Van Winkle; Michelle V. Fanucchi; Charles G. Plopper

Basal cells exist as a separate layer of cells covering most of the airway basal lamina. In this central position, they can interact with columnar epithelium, neurons, basement membrane, and the underlying mesenchymal cells. In addition, they interact with inflammatory cells, lymphocytes and dendritic cells. These interactions take place in the lateral intercellular space between basal cells. In this central position basal cells become a very important part of the epithelial-mesenchymal trophic unit of larger airways. In this review it is shown that basal cells may function as progenitor cells of airway epithelium and have a role in attachment of columnar epithelium with the basement membrane. They also have the potential to function in regulation of neurogenic inflammation, the inflammatory response, transepithelial water movement, oxidant defense of the tissue and formation of the lateral intercellular space. Other characteristics of basal cells were not clearly associated with a particular function. The functions for basal cells listed attempt to explain the presence of recently identified molecules in basal cells of airway epithelium. It should be pointed out that specific studies have not been carried out which test the relationship between the molecular functions we describe in this review and the basal cell in airway epithelium.Basal cells exist as a separate layer of cells covering most of the airway basal lamina. In this central position, they can interact with columnar epithelium, neurons, basement membrane, and the underlying mesenchymal cells. In addition, they interact with inflammatory cells, lymphocytes and dendritic cells. These interactions take place in the lateral intercellular space between basal cells. In this central position basal cells become a very important part of the epithelial-mesenchymal trophic unit of larger airways. In this review it is shown that basal cells may function as progenitor cells of airway epithelium and have a role in attachment of columnar epithelium with the basement membrane. They also have the potential to function in regulation of neurogenic inflammation, the inflammatory response, transepithelial water movement, oxidant defense of the tissue and formation of the lateral intercellular space. Other characteristics of basal cells were not clearly associated with a particular function. The functions for basal cells listed attempt to explain the presence of recently identified molecules in basal cells of airway epithelium. It should be pointed out that specific studies have not been carried out which test the relationship between the molecular functions we describe in this review and the basal cell in airway epithelium.


Toxicology and Applied Pharmacology | 2003

Repeated episodes of ozone inhalation amplifies the effects of allergen sensitization and inhalation on airway immune and structural development in Rhesus monkeys

Edward S. Schelegle; Lisa A. Miller; Laurel J. Gershwin; Michelle V. Fanucchi; Laura S. Van Winkle; Joan E. Gerriets; William F. Walby; Valerie Mitchell; Brian K. Tarkington; Viviana Wong; Gregory L. Baker; L. M. Pantle; Jesse P. Joad; Kent E. Pinkerton; Reen Wu; Michael J. Evans; Dallas M. Hyde; Charles G. Plopper

Twenty-four infant rhesus monkeys (30 days old) were exposed to 11 episodes of filtered air (FA), house dust mite allergen aerosol (HDMA), ozone (O3), or HDMA + O3 (5 days each followed by 9 days of FA). Ozone was delivered for 8 h/day at 0.5 ppm. Twelve of the monkeys were sensitized to house dust mite allergen (Dermatophagoides farinae) at ages 14 and 28 days by subcutaneous inoculation (SQ) of HDMA in alum and intraperitoneal injection of heat-killed Bordetella pertussis cells. Sensitized monkeys were exposed to HDMA aerosol for 2 h/day on days 3-5 of either FA (n = 6) or O3 (n = 6) exposure. Nonsensitized monkeys were exposed to either FA (n = 6) or O3 (n = 6). During the exposure regimen, parameters of allergy (i.e., serum IgE, histamine, and eosinophilia), airways resistance, reactivity, and structural remodeling were evaluated. Eleven repeated 5-day cycles of inhaling 0.5 ppm ozone over a 6-month period had only mild effects on the airways of nonsensitized infant rhesus monkeys. Similarly, the repeated inhalation of HDMA by HDMA-sensitized infant monkeys resulted in only mild airway effects, with the exception of a marked increase in proximal airway and terminal bronchiole content of eosinophils. In contrast, the combined cyclic inhalation of ozone and HDMA by HDMA sensitized infants monkeys resulted in a marked increase in serum IgE, serum histamine, and airways eosinophilia. Furthermore, combined cyclic inhalation of ozone and HDMA resulted in even greater alterations in airway structure and content that were associated with a significant elevation in baseline airways resistance and reactivity. These results suggest that ozone can amplify the allergic and structural remodeling effects of HDMA sensitization and inhalation.


Toxicological Sciences | 2012

Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human

Richard A. Corley; Senthil Kabilan; Andrew P. Kuprat; James P. Carson; Kevin R. Minard; Richard E. Jacob; Charles Timchalk; Robb W. Glenny; Sudhakar Pipavath; Timothy C. Cox; Christopher Wallis; Richard F. Larson; Michelle V. Fanucchi; Edward M. Postlethwait; Daniel R. Einstein

Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models.


Toxicologic Pathology | 2007

Asthma/Allergic Airways Disease : Does Postnatal Exposure to Environmental Toxicants Promote Airway Pathobiology?

Charles G. Plopper; Suzette Smiley-Jewell; Lisa A. Miller; Michelle V. Fanucchi; Michael J. Evans; Alan R. Buckpitt; Mark Avdalovic; Laurel J. Gershwin; Jesse P. Joad; Radhika Kajekar; Shawnessy D. Larson; Kent E. Pinkerton; Laura S. Van Winkle; Edward S. Schelegle; Emily M. Pieczarka; Reen Wu; Dalla M. Hyde

The recent, dramatic increase in the incidence of childhood asthma suggests a role for environmental contaminants in the promotion of interactions between allergens and the respiratory system of young children. To establish whether exposure to an environmental stressor, ozone (O3), and an allergen, house dust mite (HDMA), during early childhood promotes remodeling of the epithelial-mesenchymal trophic unit (EMTU) of the tracheobronchial airway wall by altering postnatal development, infant rhesus monkeys were exposed to cyclic episodes of filtered air (FA), HDMA, O3, or HDMA plus O3. The following alterations in the EMTU were found after exposure to HDMA, O3, or HDMA plus O3: (1) reduced airway number; (2) hyperplasia of bronchial epithelium; (3) increased mucous cells; (4) shifts in distal airway smooth muscle bundle orientation and abundance to favor hyperreactivity; (5) interrupted postnatal basement membrane zone differentiation; (6) modified epithelial nerve fiber distribution; and (7) reorganization of the airway vascular and immune system. Conclusions: cyclic challenge of infants to toxic stress during postnatal lung development modifies the EMTU. This exacerbates the allergen response to favor development of intermittent airway obstruction associated with wheeze. And, exposure of infants during early postnatal lung development initiates compromises in airway growth and development that persist or worsen as growth continues, even with cessation of exposure.


PLOS ONE | 2014

Characterization of Defects in Ion Transport and Tissue Development in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-Knockout Rats

Katherine L. Tuggle; Susan E. Birket; Xiaoxia Cui; Jeong Hong; Joe Warren; Lara Reid; Andre Chambers; Diana Ji; Kevin Gamber; Kengyeh K. Chu; Guillermo J. Tearney; Li Ping Tang; James Fortenberry; Ming Du; Joan M. Cadillac; David M. Bedwell; Steven M. Rowe; Eric J. Sorscher; Michelle V. Fanucchi

Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane conductance regulator gene (CFTR) was knocked out using a pair of zinc finger endonucleases (ZFN). The disrupted Cftr gene carries a 16 base pair deletion in exon 3, resulting in loss of CFTR protein expression. Breeding of heterozygous (CFTR+/−) rats resulted in Mendelian distribution of wild-type, heterozygous, and homozygous (CFTR−/−) pups. Nasal potential difference and transepithelial short circuit current measurements established a robust CF bioelectric phenotype, similar in many respects to that seen in CF patients. Young CFTR−/− rats exhibited histological abnormalities in the ileum and increased intracellular mucus in the proximal nasal septa. By six weeks of age, CFTR−/− males lacked the vas deferens bilaterally. Airway surface liquid and periciliary liquid depth were reduced, and submucosal gland size was abnormal in CFTR−/− animals. Use of ZFN based gene disruption successfully generated a CF animal model that recapitulates many aspects of human disease, and may be useful for modeling other CF genotypes, including CFTR processing defects, premature truncation alleles, and channel gating abnormalities.


Respiratory Physiology & Neurobiology | 2007

Early postnatal exposure to allergen and ozone leads to hyperinnervation of the pulmonary epithelium

Radhika Kajekar; Emily M. Pieczarka; Suzette Smiley-Jewell; Edward S. Schelegle; Michelle V. Fanucchi; Charles G. Plopper

Airway injury in infant monkeys exposed to ozone and/or house dust mite allergen (HDMA) is associated with a loss of epithelial innervation. In this study, we evaluated for persistence/recovery of the altered epithelial innervation. Thirty-day-old rhesus monkeys were exposed to repeated episodes of HDMA and/or ozone from 1 to 6 months of age and subsequently allowed to recover for 6 months in the absence of further ozone exposure and/or minimal HDMA challenge (sufficient to maintain allergen sensitization). At 1 year of age, nerve density in intrapulmonary airways was immunohistochemically evaluated using antibodies directed against protein gene product 9.5. Hyperinnervation and irregular epithelial nerve distribution was observed in both HDMA- and ozone-exposed groups; most prominent alterations were observed in animals exposed to HDMA plus ozone. Therefore, while adaptive mechanisms exist that re-establish epithelial innervation following cessation or diminution of exposure to HDMA and/or ozone, the recovery is associated with persistent proliferative mechanisms that result in hyperinnervation of the airways.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Mitigation of chlorine gas lung injury in rats by postexposure administration of sodium nitrite.

Amit K. Yadav; Stephen F. Doran; Andrey A. Samal; Ruchita Sharma; Kokilavani Vedagiri; Edward M. Postlethwait; Giuseppe L. Squadrito; Michelle V. Fanucchi; nd L. Jackson Roberts; Rakesh P. Patel; Sadis Matalon

Nitrite (NO(2)(-)) has been shown to limit injury to the heart, liver, and kidneys in various models of ischemia-reperfusion injury. Potential protective effects of systemic NO(2)(-) in limiting lung injury or enhancing repair have not been documented. We assessed the efficacy and mechanisms by which postexposure intraperitoneal injections of NO(2)(-) mitigate chlorine (Cl(2))-induced lung injury in rats. Rats were exposed to Cl(2) (400 ppm) for 30 min and returned to room air. NO(2)(-) (1 mg/kg) or saline was administered intraperitoneally at 10 min and 2, 4, and 6 h after exposure. Rats were killed at 6 or 24 h. Injury to airway and alveolar epithelia was assessed by quantitative morphology, protein concentrations, number of cells in bronchoalveolar lavage (BAL), and wet-to-dry lung weight ratio. Lipid peroxidation was assessed by measurement of lung F(2)-isoprostanes. Rats developed severe, but transient, hypoxemia. A significant increase of protein concentration, neutrophil numbers, airway epithelia in the BAL, and lung wet-to-dry weight ratio was evident at 6 h after Cl(2) exposure. Quantitative morphology revealed extensive lung injury in the upper airways. Airway epithelial cells stained positive for terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL), but not caspase-3. Administration of NO(2)(-) resulted in lower BAL protein levels, significant reduction in the intensity of the TUNEL-positive cells, and normal lung wet-to-dry weight ratios. F(2)-isoprostane levels increased at 6 and 24 h after Cl(2) exposure in NO(2)(-)- and saline-injected rats. This is the first demonstration that systemic NO(2)(-) administration mitigates airway and epithelial injury.


Clinical & Experimental Allergy | 2004

Smooth muscle hypertrophy in distal airways of sensitized infant rhesus monkeys exposed to house dust mite allergen

Mai-Uyen Tran; Alison J. Weir; Michelle V. Fanucchi; A. E. Rodriguez; L. M. Pantle; Suzette Smiley-Jewell; L. S. Van Winkle; Michael J. Evans; Lisa A. Miller; Edward S. Schelegle; Laurel J. Gershwin; Dallas M. Hyde; Charles G. Plopper

Background Airway smooth muscle hypertrophy is closely associated with the pathophysiology of hyper‐reactive airways in allergic asthma.


Laboratory Investigation | 2002

Fibroblast growth factor-2 in Remodeling of the developing basement membrane zone in the trachea of infant rhesus monkeys sensitized and challenged with allergen

Michael J. Evans; Laura S. Van Winkle; Michelle V. Fanucchi; Gregory L. Baker; April E. Murphy; Susan J. Nishio; Edward S. Schelegle; Laurel J. Gershwin; Philip L Sannes; Charles G. Plopper

Remodeling of the epithelial basement membrane zone (BMZ) involves increased deposition of collagen, resulting in thickening of the BMZ. The current study focuses on fibroblast growth factor-2 (FGF-2) in the tracheal BMZ in house dust mite allergen (HDMA)-sensitized infant rhesus monkeys, challenged with HDMA at a time when the BMZ is undergoing active postnatal development. To detect structural changes in the BMZ, we measured collagens I, III, and V. To detect changes in the function of the BMZ, we measured immunoreactivity of the heparan sulfate proteoglycan, perlecan, and FGF-2. We found significant thickening of the tracheal BMZ (p < 0.05) with each of these parameters. We also found that all HDMA tracheal samples expressed thin focal areas of the BMZ associated with leukocyte trafficking. These areas were depleted of perlecan and FGF-2; however, increased FGF-2 immunoreactivity was present in the adjacent basal cells. We conclude that basal cells and FGF-2 are involved with significant remodeling of the BMZ in the developing trachea of infant rhesus monkeys exposed to HDMA.

Collaboration


Dive into the Michelle V. Fanucchi's collaboration.

Top Co-Authors

Avatar

Charles G. Plopper

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Michael J. Evans

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa A. Miller

California National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward M. Postlethwait

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan R. Buckpitt

California National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge