Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren A. Austin is active.

Publication


Featured researches published by Lauren A. Austin.


Journal of the American Chemical Society | 2008

A One-Step Homogeneous Immunoassay for Cancer Biomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering

Xiong Liu; Qiu Dai; Lauren A. Austin; Janelle L. Coutts; Genevieve Knowles; Jianhua Zou; Hui Chen; Qun Huo

A one-step homogeneous immunoassay for the detection of a prostate cancer biomarker, free-PSA (prostate specific antigen), was developed using gold nanoparticle probes coupled with dynamic light scattering (DLS) measurements. A spherical gold nanoparticle with a core diameter around 37 nm and a gold nanorod with a dimension of 40 by 10 nm were first conjugated with two different primary anti-PSA antibodies and then used as optical probes for the immunoassay. In the presence of antigen f-PSA in solution, the nanoparticles and nanorods aggregate together into pairs and oligomers through the formation of a sandwich type antibody-antigen-antibody linkage. The relative ratio of nanoparticle-nanorod pairs and oligomers versus individual nanoparticles was quantitatively monitored by DLS measurement. A correlation can be established between this relative ratio and the amount of antigen in solution. The light scattering intensity of nanoparticles and nanoparticle oligomers is several orders of magnitude higher than proteins and other typical molecules, making it possible to detect nanoparticle probes in the low picomolar concentration range. f-PSA in the concentration range from 0.1 to 10 ng/mL was detected by this one-step and washing-free homogeneous immunoassay.


Journal of the American Chemical Society | 2008

A One-Step Highly Sensitive Method for DNA Detection Using Dynamic Light Scattering

Qiu Dai; Xiong Liu; Janelle L. Coutts; Lauren A. Austin; Qun Huo

A one-step homogeneous DNA detection method with high sensitivity was developed using gold nanoparticles (AuNPs) coupled with dynamic light scattering (DLS) measurement. Citrate-protected AuNPs with a diameter of 30 nm were first functionalized with two sets of single-stranded DNA probes and then used as optical probes for DNA detection. In the presence of target DNA, the hybridization between target DNA and the two nanoparticle probes caused the formation of nanoparticle dimers, trimers, and oligomers. As a result, the nanoparticle aggregation increased the average diameter of the whole nanoparticle population, which can be monitored simply by DLS measurement. A quantitative correlation can be established between the average diameter of the nanoparticles and the target DNA concentration. This DLS-based assay is extremely easy to conduct and requires no additional separation and amplification steps. The detection limit is around 1 pM, which is 4 orders of magnitude better than that of light-absorption-based methods. Single base pair mismatched DNAs can be readily discriminated from perfectly matched target DNAs using this assay.


Journal of Physical Chemistry B | 2014

The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments

Megan A. Mackey; Moustafa R. K. Ali; Lauren A. Austin; Rachel D. Near; Mostafa A. El-Sayed

The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution.


Archives of Toxicology | 2014

The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery

Lauren A. Austin; Megan A. Mackey; Erik C. Dreaden; Mostafa A. El-Sayed

Nanotechnology is a rapidly growing area of research in part due to its integration into many biomedical applications. Within nanotechnology, gold and silver nanostructures are some of the most heavily utilized nanomaterial due to their unique optical, photothermal, and facile surface chemical properties. In this review, common colloid synthesis methods and biofunctionalization strategies of gold and silver nanostructures are highlighted. Their unique properties are also discussed in terms of their use in biodiagnostic, imaging, therapeutic, and drug delivery applications. Furthermore, relevant clinical applications utilizing gold and silver nanostructures are also presented. We also provide a table with reviews covering related topics.


Bioconjugate Chemistry | 2011

Nuclear Targeted Silver Nanospheres Perturb the Cancer Cell Cycle Differently than Those of Nanogold

Lauren A. Austin; Bin Kang; Chun-Wan Yen; Mostafa A. El-Sayed

Plasmonic nanoparticle research has become increasingly active due to potential uses in biomedical applications. However, little is known about the intracellular effects these nanoparticles have on mammalian cells. The aim of this work is to investigate whether silver nanoparticles (AgNPs) conjugated with nuclear and cytoplasmic targeting peptides exhibit the same intracellular effects on cancer cells as peptide-conjugated gold nanoparticles (AuNPs). Nuclear and cytoplasmic targeting spherical AgNPs with a diameter of 35 nm were incubated in a cancer (HSC-3) and healthy (HaCat) cell line. By utilizing flow cytometry, confocal microscopy, and real-time dark field imaging, we were able to analyze how targeting AgNPs affect the cell cycle and cell division. These experiments demonstrated that nuclear-targeting AgNPs cause DNA double-strand breaks and a subsequent increase in the sub G1 (apoptotic) population in our cancer cell model at much lower concentrations than previously reported for nuclear targeting AuNPs. Unlike the M phase accumulation seen in cancer cells treated with AuNPs, an accumulation in the G2 phase of the cell cycle was observed in both cell models when treated with AgNPs. Additionally, real-time dark field imaging showed that cancer cells treated with nuclear targeting AgNPs did not undergo cell division and ultimately underwent programmed cell death. A possible explanation of the observed results is discussed in terms of the chemical properties of the nanoparticles.


Journal of the American Chemical Society | 2011

Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles.

Lauren A. Austin; Bin Kang; Chun-Wan Yen; Mostafa A. El-Sayed

Plasmonic nanoparticles (NPs) have become a useful platform in medicine for potential uses in disease diagnosis and treatment. Recently, it has been reported that plasmonic NPs conjugated to nuclear-targeting peptides cause DNA damage and apoptotic populations in cancer cells. In the present work, we utilized the plasmonic scattering property and the ability of nuclear-targeted silver nanoparticles (NLS/RGD-AgNPs) to induce programmed cell death in order to image in real-time the behavior of human oral squamous carcinoma (HSC-3) cell communities during and after the induction of apoptosis. Plasmonic live-cell imaging revealed that HSC-3 cells behave as nonprofessional phagocytes. The induction of apoptosis in some cells led to attraction of and their subsequent engulfment by neighboring cells. Attraction to apoptotic cells resulted in clustering of the cellular community. Live-cell imaging also revealed that, as the initial concentration of NLS/RGD-AgNPs increases, the rate of self-killing increases and the degree of attraction and clustering decreases. These results are discussed in terms of the proposed mechanism of cells undergoing programmed cell death.


ACS Nano | 2014

Observing Real-Time Molecular Event Dynamics of Apoptosis in Living Cancer Cells using Nuclear-Targeted Plasmonically Enhanced Raman Nanoprobes

Bin Kang; Lauren A. Austin; Mostafa A. El-Sayed

Apoptosis is a biological process that plays important roles in embryogenesis, aging, and various diseases. During the process of apoptosis, cells undergo a series of morphological and molecular events such as blebbing, cell shrinkage, proteolysis, and nuclear DNA fragmentation. Investigating these events on a molecular level is crucial for gaining a more complete understanding of the intricate mechanism of apoptosis; however, the simultaneous direct observation of morphological and molecular events in real-time on a single living cell scale still remains a challenge. Herein, we directly monitored morphological and molecular events during cellular apoptosis in real-time after the treatment of an apoptosis-inducing agent, by utilizing our previously described plasmonically enhanced Rayleigh/Raman spectroscopic technique. Spectroscopic analysis of the DNA/protein composition around the cell nucleus revealed the occurrence and dynamics of three apoptotic molecular events: protein denaturation, proteolysis, and DNA fragmentation. The molecular event dynamics were used to create a temporal profile of apoptotic events in single cells. It is found that the sequence of events occurring in the apoptotic process induced by hydrogen peroxide addition is protein denaturation through disulfide bond breakage as well as DNA fragmentation, followed in time by protein unraveling with hydrophobic amino acid exposure, and finally protein degradation. These results demonstrate the potential of using this time-dependent plasmonically enhanced vibrational imaging technique to study the detailed mechanism of other apoptosis molecular pathways induced by different agents (e.g., anticancer drugs). A note is given in the conclusion discussing the expected large difference between the SERS spectrum of biological molecules in solution and that observed in live cells which are enhanced by the plasmonic field of the aggregated nanoparticles.


Nano Letters | 2012

Real-Time Molecular Imaging throughout the Entire Cell Cycle by Targeted Plasmonic-Enhanced Rayleigh/Raman Spectroscopy

Bin Kang; Lauren A. Austin; Mostafa A. El-Sayed

Due to their strong enhancement of scattered light, plasmonic nanoparticles have been utilized for various biological and medical applications. Here, we describe a new technique, Targeted Plasmonic-Enhanced Single-Cell Rayleigh/Raman Spectroscopy, to monitor the molecular changes of any cell-component, such as the nucleus, during the different phases of its full cell cycle by simultaneously recording its Rayleigh images and Raman vibration spectra in real-time. The analysis of the observed Raman DNA and protein peaks allowed the different phases of the cell cycle to be identified. This technique could be used for disease diagnostics and potentially improve our understanding of the molecular mechanisms of cellular functions such as division, death, signaling, and drug action.


Small | 2012

Small Molecule–Gold Nanorod Conjugates Selectively Target and Induce Macrophage Cytotoxicity towards Breast Cancer Cells

Erik C. Dreaden; Sandra C. Mwakwari; Lauren A. Austin; Matthew J. Kieffer; Adegboyega K. Oyelere; Mostafa A. El-Sayed

Gold nanoparticles are known to activate anti-tumor potential in macrophage immune cells; however, the subsequent effects of these cells on others nearby are poorly understood. A novel gold-nanoparticle conjugate that selectively targets and induces cytotoxic activity of tumor-associated macrophages towards breast cancer cells in co-culture is synthesized. These constructs are promising new tools for studying fundamental biological interactions with nanoscale materials and candidates for emerging macrophage-mediated delivery applications.


Bioconjugate Chemistry | 2012

Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells.

Erik C. Dreaden; Berkley E. Gryder; Lauren A. Austin; Brice A. Tene Defo; Steven C. Hayden; Min Pi; L. Darryl Quarles; Adegboyega K. Oyelere; Mostafa A. El-Sayed

Prostate cancer is the most commonly diagnosed cancer among men in the developed countries.(1) One in six males in the U.S.(2) and one in nine males in the U.K.(3) will develop the disease at some point during their lifetime. Despite advances in prostate cancer screening, more than a quarter of a million men die from the disease every year(1) due primarily to treatment-resistance and metastasis. Colloidal nanotechnologies can provide tremendous enhancements to existing targeting/treatment strategies for prostate cancer to which malignant cells are less sensitive. Here, we show that antiandrogen gold nanoparticles--multivalent analogues of antiandrogens currently used in clinical therapy for prostate cancer--selectively engage two distinct receptors, androgen receptor (AR), a target for the treatment of prostate cancer, as well as a novel G-protein coupled receptor, GPRC6A, that is also upregulated in prostate cancer. These nanoparticles selectively accumulated in hormone-insensitive and chemotherapy-resistant prostate cancer cells, bound androgen receptor with multivalent affinity, and exhibited greatly enhanced drug potency versus monovalent antiandrogens currently in clinical use. Further, antiandrogen gold nanoparticles selectively stimulated GPRC6A with multivalent affinity, demonstrating that the delivery of nanoscale antiandrogens can also be facilitated by the transmembrane receptor in order to realize increasingly selective, increasingly potent therapy for treatment-resistant prostate cancers.

Collaboration


Dive into the Lauren A. Austin's collaboration.

Top Co-Authors

Avatar

Mostafa A. El-Sayed

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bin Kang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik C. Dreaden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Megan A. Mackey

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adegboyega K. Oyelere

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Qun Huo

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Xiong Liu

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Janelle L. Coutts

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Qiu Dai

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Chun-Wan Yen

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge