Lauren A. Cowley
Public Health England
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauren A. Cowley.
Clinical Infectious Diseases | 2015
Timothy J. Dallman; Lisa Byrne; Philip M. Ashton; Lauren A. Cowley; Neil T. Perry; G. K. Adak; Liljana Petrovska; Richard J. Ellis; Richard Elson; Anthony Underwood; Jonathan Green; William P. Hanage; Claire Jenkins; Kathie Grant; John Wain
BACKGROUND National surveillance of gastrointestinal pathogens, such as Shiga toxin-producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation. METHODS We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012. The genetic distance between each isolate, as estimated by WGS, was calculated and phylogenetic methods were used to place strains in an evolutionary context. RESULTS Estimates of linked clusters representing STEC O157 outbreaks in England and Wales increased by 2-fold when WGS was used instead of traditional typing techniques. The previously unidentified clusters were often widely geographically distributed and small in size. Phylogenetic analysis facilitated identification of temporally distinct cases sharing common exposures and delineating those that shared epidemiological and temporal links. Comparison with multi locus variable number tandem repeat analysis (MLVA) showed that although MLVA is as sensitive as WGS, WGS provides a more timely resolution to outbreak clustering. CONCLUSIONS WGS has come of age as a molecular typing tool to inform national surveillance of STEC O157; it can be used in real time to provide the highest strain-level resolution for outbreak investigation. WGS allows linked cases to be identified with unprecedented specificity and sensitivity that will facilitate targeted and appropriate public health investigations.
Nature | 2016
Paula Ruibal; Lisa Oestereich; Anja Lüdtke; Beate Becker-Ziaja; David M. Wozniak; Romy Kerber; Miša Korva; Mar Cabeza-Cabrerizo; Joseph Akoi Bore; Fara Raymond Koundouno; Sophie Duraffour; Romy Weller; Anja Thorenz; Eleonora Cimini; Domenico Viola; Chiara Agrati; Johanna Repits; Babak Afrough; Lauren A. Cowley; Didier Ngabo; Julia Hinzmann; Marc Mertens; Inês Vitoriano; Christopher H. Logue; Jan Peter Boettcher; Elisa Pallasch; Andreas Sachse; Amadou Bah; Katja Nitzsche; Eeva Kuisma
Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4+ and CD8+ T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.
PLOS ONE | 2014
Timothy J. Dallman; Marie A. Chattaway; Lauren A. Cowley; Michel Doumith; Rediat Tewolde; David Wooldridge; Anthony Underwood; Derren Ready; John Wain; Kirsty Foster; Kathie Grant; Claire Jenkins
Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype.
BMC Genomics | 2015
Lauren A. Cowley; Stephen J. Beckett; Margo E. Chase-Topping; Neil T. Perry; Tim Dallman; David L. Gally; Claire Jenkins
BackgroundShiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles.ResultsThe typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types.ConclusionSequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.
Emerging Infectious Diseases | 2016
Piers Mook; Jacquelyn McCormick; Manpreet Bains; Lauren A. Cowley; Marie A. Chattaway; Claire Jenkins; Amy Mikhail; Gwenda Hughes; Richard Elson; Martin Day; Rohini Manuel; Jayshree Dave; Nigel Field; Gauri Godbole; Timothy J. Dallman; Paul Crook
In England in 2015, Shigella sonnei isolates from men who have sex with men produced extended-spectrum β-lactamases and exhibited macrolide resistance. Whole-genome sequencing showed a close relationship among the isolates, which harbored a plasmid that was previously identified in a shigellosis outbreak among this population but has acquired a mobile element.
Frontiers in Microbiology | 2015
Mohammad Tariq; Francesca Everest; Lauren A. Cowley; Anthony De Soyza; Giles Holt; Simon Bridge; Audrey Perry; John D. Perry; Stephen Bourke; Stephen P. Cummings; Clare Lanyon; Jeremy J. Barr; Darren Smith
Pseudomonas aeruginosa (Pa), normally a soil commensal, is an important opportunistic pathogen in Cystic Fibrosis (CF) and non-Cystic Fibrosis Bronchiectasis (nCFBR). Persistent infection correlates with accelerated decline in lung function and early mortality. The horizontal transfer of DNA by temperate bacteriophages can add gene function and selective advantages to their bacterial host within the constrained environment of the lower lung. In this study, we chemically induce temperate bacteriophages from clonal cultures of Pa and identify their mixed viral communities employing metagenomic approaches. We compared 92 temperate phage metagenomes stratified from these clinical backgrounds (47 CF and 45 nCFBR Pa isolates) using MG-RAST and GeneWise2. KEGG analysis shows the complexity of temperate phage accessory gene carriage increases with duration and severity of the disease. Furthermore, we identify the presence of Ig-like motifs within phage structural genes linked to bacterial adhesion and carbohydrate binding including Big_2, He_Pig, and Fn3. This study provides the first clinical support to the proposed bacteriophage adherence to mucus (BAM) model and the evolution of phages interacting at these mucosal surfaces over time.
PLOS Neglected Tropical Diseases | 2017
Eleonora Cimini; Domenico Viola; Mar Cabeza-Cabrerizo; Antonella Romanelli; Alessandra Sacchi; Veronica Bordoni; Rita Casetti; Federica Turchi; Federico Martini; Joseph Akoi Bore; Fara Raymond Koundouno; Sophie Duraffour; Janine Michel; Tobias Holm; Elsa Gayle Zekeng; Lauren A. Cowley; Isabel García Dorival; Juliane Doerrbecker; Nicole Hetzelt; Jonathan H. J. Baum; Jasmine Portmann; Roman Wölfel; Martin Gabriel; Osvaldo Miranda; Graciliano Díaz; José E. Díaz; Yoel A. Fleites; Carlos A. Piñeiro; Carlos M. Castro; Lamine Koivogui
Background Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014–2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Conclusions/Significances Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.
Microbial Genomics | 2016
Lauren A. Cowley; Timothy J. Dallman; Stephen Fitzgerald; Neil Irvine; Paul J. Rooney; Sean P. McAteer; Martin Day; Neil T. Perry; James L. Bono; Claire Jenkins; David L. Gally
Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a public health threat and outbreaks occur worldwide. Here, we investigate genomic differences between related STEC O157:H7 that caused two outbreaks, eight weeks apart, at the same restaurant. Short-read genome sequencing divided the outbreak strains into two sub-clusters separated by only three single-nucleotide polymorphisms in the core genome while traditional typing identified them as separate phage types, PT8 and PT54. Isolates did not cluster with local strains but with those associated with foreign travel to the Middle East/North Africa. Combined long-read sequencing approaches and optical mapping revealed that the two outbreak strains had undergone significant microevolution in the accessory genome with prophage gain, loss and recombination. In addition, the PT54 sub-type had acquired a 240 kbp multi-drug resistance (MDR) IncHI2 plasmid responsible for the phage type switch. A PT54 isolate had a general fitness advantage over a PT8 isolate in rich medium, including an increased capacity to use specific amino acids and dipeptides as a nitrogen source. The second outbreak was considerably larger and there were multiple secondary cases indicative of effective human-to-human transmission. We speculate that MDR plasmid acquisition and prophage changes have adapted the PT54 strain for human infection and transmission. Our study shows the added insights provided by combining whole-genome sequencing approaches for outbreak investigations.
Microbial Genomics | 2016
Sharif Shaaban; Lauren A. Cowley; Sean P. McAteer; Claire Jenkins; Timothy J. Dallman; James L. Bono; David L. Gally
Enterohaemorrhagic Escherichia coli (EHEC) O157 is a zoonotic pathogen for which colonization of cattle and virulence in humans is associated with multiple horizontally acquired genes, the majority present in active or cryptic prophages. Our understanding of the evolution and phylogeny of EHEC O157 continues to develop primarily based on core genome analyses; however, such short-read sequences have limited value for the analysis of prophage content and its chromosomal location. In this study, we applied Single Molecule Real Time (SMRT) sequencing, using the Pacific Biosciences long-read sequencing platform, to isolates selected from the main sub-clusters of this clonal group. Prophage regions were extracted from these sequences and from published reference strains. Genome position and prophage diversity were analysed along with genetic content. Prophages could be assigned to clusters, with smaller prophages generally exhibiting less diversity and preferential loss of structural genes. Prophages encoding Shiga toxin (Stx) 2a and Stx1a were the most diverse, and more variable compared to prophages encoding Stx2c, further supporting the hypothesis that Stx2c-prophage integration was ancestral to acquisition of other Stx types. The concept that phage type (PT) 21/28 (Stx2a+, Stx2c+) strains evolved from PT32 (Stx2c+) was supported by analysis of strains with excised Stx-encoding prophages. Insertion sequence elements were over-represented in prophage sequences compared to the rest of the genome, showing integration in key genes such as stx and an excisionase, the latter potentially acting to capture the bacteriophage into the genome. Prophage profiling should allow more accurate prediction of the pathogenic potential of isolates.
bioRxiv | 2018
Karel Břinda; Alanna Callendrello; Lauren A. Cowley; Themoula Charalampous; Robyn S Lee; Derek R. MacFadden; Gregory Kucherov; Justin O'Grady; Michael H. Baym; William P. Hanage
Surveillance of drug-resistant bacteria is essential for healthcare providers to deliver effective empiric antibiotic therapy. However, traditional molecular epidemiology does not typically occur on a timescale that could impact patient treatment and outcomes. Here we present a method called ‘genomic neighbor typing’ for inferring the phenotype of a bacterial sample by identifying its closest relatives in a database of genomes with metadata. We show that this technique can infer antibiotic susceptibility and resistance for both S. pneumoniae and N. gonorrhoeae. We implemented this with rapid k-mer matching, which, when used on Oxford Nanopore MinION data, can run in real time. This resulted in determination of resistance within ten minutes (sens/spec 91%/100% for S. pneumoniae and 81%/100% N. gonorrhoeae from isolates with a representative database) of sequencing starting, and for clinical metagenomic sputum samples (75%/100% for S. pneumoniae), within four hours of sample collection. This flexible approach has wide application to pathogen surveillance and may be used to greatly accelerate appropriate empirical antibiotic treatment.Surveillance of circulating drug resistant bacteria is essential for healthcare providers to deliver effective empiric antibiotic therapy. However, the results of surveillance may not be available on a timescale that is optimal for guiding patient treatment. Here we present a method for inferring characteristics of an unknown bacterial sample by identifying the presence of sequence variation across the genome that is linked to a phenotype of interest, in this case drug resistance. We demonstrate an implementation of this principle using sequence k-mer content, matched to a database of known genomes. We show this technique can be applied to data from an Oxford Nanopore device in real time and is capable of identifying the presence of a known resistant strain in 5 minutes, even from a complex metagenomic sample. This flexible approach has wide application to pathogen surveillance and may be used to greatly accelerate diagnoses of resistant infections.