Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren A. Wirtzfeld is active.

Publication


Featured researches published by Lauren A. Wirtzfeld.


Cancer Research | 2005

Three-dimensional High-Frequency Ultrasound Imaging for Longitudinal Evaluation of Liver Metastases in Preclinical Models

Kevin C. Graham; Lauren A. Wirtzfeld; Lisa T. MacKenzie; Carl O. Postenka; Alan C. Groom; Ian C. MacDonald; Aaron Fenster; James C. Lacefield; Ann F. Chambers

Liver metastasis is a clinically significant contributor to the mortality associated with melanoma, colon, and breast cancer. Preclinical mouse models are essential to the study of liver metastasis, yet their utility has been limited by the inability to study this dynamic process in a noninvasive and longitudinal manner. This study shows that three-dimensional high-frequency ultrasound can be used to noninvasively track the growth of liver metastases and evaluate potential chemotherapeutics in experimental liver metastasis models. Liver metastases produced by mesenteric vein injection of B16F1 (murine melanoma), PAP2 (murine H-ras-transformed fibroblast), HT-29 (human colon carcinoma), and MDA-MB-435/HAL (human breast carcinoma) cells were identified and tracked longitudinally. Tumor size and location were verified by histologic evaluation. Tumor volumes were calculated from the three-dimensional volumetric data, with individual liver metastases showing exponential growth. The importance of volumetric imaging to reduce uncertainty in tumor volume measurement was shown by comparing three-dimensional segmented volumes with volumes estimated from diameter measurements and the assumption of an ellipsoid shape. The utility of high-frequency ultrasound imaging in the evaluation of therapeutic interventions was established with a doxorubicin treatment trial. These results show that three-dimensional high-frequency ultrasound imaging may be particularly well suited for the quantitative assessment of metastatic progression and the evaluation of chemotherapeutics in preclinical liver metastasis models.


Cancer Research | 2005

A New Three-Dimensional Ultrasound Microimaging Technology for Preclinical Studies Using a Transgenic Prostate Cancer Mouse Model

Lauren A. Wirtzfeld; Guojun Wu; Michael Bygrave; Yasuto Yamasaki; Hideki Sakai; Madeleine Moussa; Jonathan I. Izawa; Donal B. Downey; Norman M. Greenberg; Aaron Fenster; Jim W. Xuan; James C. Lacefield

Prostate cancer is the most common cancer in adult men in North America. Preclinical studies of prostate cancer employ genetically engineered mouse models, because prostate cancer does not occur naturally in rodents. Widespread application of these models has been limited because autopsy was the only reliable method to evaluate treatment efficacy in longitudinal studies. This article reports the first use of three-dimensional ultrasound microimaging for measuring tumor progression in a genetically engineered mouse model, the 94-amino acid prostate secretory protein gene-directed transgenic prostate cancer model. Qualitative comparisons of three-dimensional ultrasound images with serial histology sections of prostate tumors show the ability of ultrasound to accurately depict the size and shape of malignant masses in live mice. Ultrasound imaging identified tumors ranging from 2.4 to 14 mm maximum diameter. The correlation coefficient of tumor diameter measurements done in vivo with three-dimensional ultrasound and at autopsy was 0.998. Prospective tumor detection sensitivity and specificity were both >90% when diagnoses were based on repeated ultrasound examinations done on separate days. Representative exponential growth curves constructed via longitudinal ultrasound imaging indicated volume doubling times of 5 and 13 days for two prostate tumors. Compared with other microimaging and molecular imaging modalities, the application of three-dimensional ultrasound imaging to prostate cancer in mice showed advantages, such as high spatial resolution and contrast in soft tissue, fast and uncomplicated protocols, and portable and economical equipment that will likely enable ultrasound to become a new microimaging modality for mouse preclinical trial studies.


Medical Physics | 2014

Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

Hadi Tadayyon; Ali Sadeghi-Naini; Lauren A. Wirtzfeld; Frances C. Wright; Gregory J. Czarnota

PURPOSE Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. METHODS Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum--midband fit, slope, and 0-MHz-intercept--were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. RESULTS Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor grades further improved when the textural features of the effective scatterer diameter parametric map were combined with the mean value of the map (p = 0.004). CONCLUSIONS Overall, the binary classification results (tumor versus normal tissue) were more promising than tumor grade assessment. Combinations of advanced parameters can further improve the separation of tumors from normal tissue compared to the use of linear regression parameters. While the linear regression parameters were sufficient for characterizing breast tumors and normal breast tissues, advanced parameters and their textural features were required to better characterize tumor subtypes.


Ultrasonic Imaging | 2011

Ultrasonic Attenuation and Backscatter Coefficient Estimates of Rodent-Tumor-Mimicking Structures: Comparison of Results among Clinical Scanners

Kibo Nam; Ivan A. Rosado-Mendez; Lauren A. Wirtzfeld; Alexander D. Pawlicki; Viksit Kumar; Ernest L. Madsen; Goutam Ghoshai; Roberto J. Lavarello; Michael L. Oelze; Timothy A. Bigelow; James A. Zagzebski; William D. O'Brien; Timothy J. Hall

In vivo estimations of the frequency-dependent acoustic attenuation (α) and backscatter (η) coefficients using radiofrequency (rf) echoes acquired with clinical ultrasound systems must be independent of the data acquisition setup and the estimation procedures. In a recent in vivo assessment of these parameters in rodent mammary tumors, overall agreement was observed among α and η estimates using data from four clinical imaging systems. In some cases, particularly in highly-attenuating heterogeneous tumors, multisystem variability was observed. This paper compares α and η estimates of a well-characterized rodent-tumor-mimicking homogeneous phantom scanned using seven transducers with the same four clinical imaging systems: a Siemens Acuson S2000, an Ultrasonix RP, a Zonare Z.one and a VisualSonics Vevo2100. α and η estimates of lesion-mimicking spheres in the phantom were independently assessed by three research groups, who analyzed their systems rf echo signals. Imaging-system-based estimates of α and η of both lesion-mimicking spheres were comparable to through-transmission laboratory estimates and to predictions using Farans theory, respectively. A few notable variations in results among the clinical systems were observed but the average and maximum percent difference between α estimates and laboratory-assessed values was 11% and 29%, respectively. Excluding a single outlier dataset, the average and maximum average difference between η estimates for the clinical systems and values predicted from scattering theory was 16% and 33%, respectively. These results were an improvement over previous interlaboratory comparisons of attenuation and backscatter estimates. Although the standardization of our estimation methodologies can be further improved, this study validates our results from previous rodent breast-tumor model studies.


Ultrasonic Imaging | 2012

Comparison of Ultrasound Attenuation and Backscatter Estimates in Layered Tissue-Mimicking Phantoms among Three Clinical Scanners

Kibo Nam; Ivan M. Rosado-Mendez; Lauren A. Wirtzfeld; Goutam Ghoshal; Alexander D. Pawlicki; Ernest L. Madsen; Roberto J. Lavarello; Michael L. Oelze; James A. Zagzebski; William D. O'Brien; Timothy J. Hall

Backscatter and attenuation coefficient estimates are needed in many quantitative ultrasound strategies. In clinical applications, these parameters may not be easily obtained because of variations in scattering by tissues overlying a region of interest (ROI). The goal of this study is to assess the accuracy of backscatter and attenuation estimates for regions distal to nonuniform layers of tissue-mimicking materials. In addition, this work compares results of these estimates for “layered” phantoms scanned using different clinical ultrasound machines. Two tissue-mimicking phantoms were constructed, each exhibiting depth-dependent variations in attenuation or backscatter. The phantoms were scanned with three ultrasound imaging systems, acquiring radio frequency echo data for offline analysis. The attenuation coefficient and the backscatter coefficient (BSC) for sections of the phantoms were estimated using the reference phantom method. Properties of each layer were also measured with laboratory techniques on test samples manufactured during the construction of the phantom. Estimates of the attenuation coefficient versus frequency slope, α0, using backscatter data from the different systems agreed to within 0.24 dB/cm-MHz. Bias in the α0 estimates varied with the location of the ROI. BSC estimates for phantom sections whose locations ranged from 0 to 7 cm from the transducer agreed among the different systems and with theoretical predictions, with a mean bias error of 1.01 dB over the used bandwidths. This study demonstrates that attenuation and BSCs can be accurately estimated in layered inhomogeneous media using pulse-echo data from clinical imaging systems.


Journal of the Acoustical Society of America | 2012

Cross-imaging system comparison of backscatter coefficient estimates from a tissue-mimicking material

Kibo Nam; Ivan M. Rosado-Mendez; Lauren A. Wirtzfeld; Viksit Kumar; Ernest L. Madsen; Goutam Ghoshal; Alexander D. Pawlicki; Michael L. Oelze; Roberto J. Lavarello; Timothy A. Bigelow; James A. Zagzebski; William D. O'Brien; Timothy J. Hall

A key step toward implementing quantitative ultrasound techniques in a clinical setting is demonstrating that parameters such as the ultrasonic backscatter coefficient (BSC) can be accurately estimated independent of the clinical imaging system used. In previous studies, agreement in BSC estimates for well characterized phantoms was demonstrated across different laboratory systems. The goal of this study was to compare the BSC estimates of a tissue mimicking sample measured using four clinical scanners, each providing RF echo data in the 1-15 MHz frequency range. The sample was previously described and characterized with single-element transducer systems. Using a reference phantom for analysis, excellent quantitative agreement was observed across the four array-based imaging systems for BSC estimates. Additionally, the estimates from data acquired with the clinical systems agreed with theoretical predictions and with estimates from laboratory measurements using single-element transducers.


Journal of the Acoustical Society of America | 2010

Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms.

Michael R. King; Janelle J. Anderson; Maria Teresa Herd; Darryl Ma; Alexander Haak; Lauren A. Wirtzfeld; Ernest L. Madsen; James A. Zagzebski; Michael L. Oelze; Timothy J. Hall; William D. O'Brien

Applicability of ultrasound phantoms to biological tissue has been limited because most phantoms have generally used strong scatterers. The objective was to develop very weakly scattering phantoms, whose acoustic scattering properties are likely closer to those of tissues and then compare theoretical simulations and experimental backscatter coefficient (BSC) results. The phantoms consisted of agar spheres of various diameters (nominally between 90 and 212 microm), containing ultrafiltered milk, suspended in an agar background. BSC estimates were performed at two institutions over the frequency range 1-13 MHz, and compared to three models. Excellent agreement was shown between the two laboratory results as well as with the three models.


Journal of Ultrasound in Medicine | 2010

Cross-imaging platform comparison of ultrasonic backscatter coefficient measurements of live rat tumors

Lauren A. Wirtzfeld; Goutam Ghoshal; Zachary T. Hafez; Kibo Nam; Yassin Labyed; Janelle J. Anderson; Maria Teresa Herd; Alexander Haak; Zhi He; Rita J. Miller; Sandhya Sarwate; Douglas G. Simpson; James A. Zagzebski; Timothy A. Bigelow; Michael L. Oelze; Timothy J. Hall; William D. O'Brien

Objective. To translate quantitative ultrasound (QUS) from the laboratory into the clinic, it is necessary to demonstrate that the measurements are platform independent. Because the backscatter coefficient (BSC) is the fundamental estimate from which additional QUS estimates are calculated, agreement between BSC results using different systems must be demonstrated. This study was an intercomparison of BSCs from in vivo spontaneous rat mammary tumors acquired by different groups using 3 clinical array systems and a single‐element laboratory scanner system. Methods. Radio frequency data spanning the 1‐ to 14‐MHz frequency range were acquired in 3 dimensions from all animals using each system. Each group processed their radio frequency data independently, and the resulting BSCs were compared. The rat tumors were diagnosed as either carcinoma or fibroadenoma. Results. Carcinoma BSC results exhibited small variations between the multiple slices acquired with each transducer, with similar slopes of BSC versus frequency for all systems. Somewhat larger variations were observed in fibroadenomas, although BSC variations between slices of the same tumor were of comparable magnitude to variations between transducers and systems. The root mean squared (RMS) errors between different transducers and imaging platforms were highly variable. The lowest RMS errors were observed for the fibroadenomas between 4 and 5 MHz, with an average RMS error of 4 × 10−5 cm−1Sr−1 and an average BSC value of 7.1 × 10−4 cm−1Sr−1, or approximately 5% error. The highest errors were observed for the carcinoma between 7 and 8 MHz, with an RMS error of 1.1 × 10−1 cm−1Sr−1 and an average BSC value of 3.5 × 10−2 cm−1Sr−1, or approximately 300% error. Conclusions. This technical advance shows the potential for QUS technology to function with different imaging platforms.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2013

Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model

Lauren A. Wirtzfeld; Kibo Nam; Yassin Labyed; Goutam Ghoshal; Alexander Haak; Ellora Sen-Gupta; Zhi He; Nathaniel Hirtz; Rita J. Miller; Sandhya Sarwate; Douglas G. Simpson; James A. Zagzebski; Timothy A. Bigelow; Michael L. Oelze; Timothy J. Hall; William D. O'Brien

This contribution demonstrates that quantitative ultrasound (QUS) capabilities are platform independent, using an in vivo model. Frequency-dependent attenuation estimates, backscatter coefficient, and effective scatterer diameter estimates are shown to be comparable across four different ultrasound imaging systems with varied processing techniques. The backscatter coefficient (BSC) is a fundamental material property from which several QUS parameters are estimated; therefore, consistent BSC estimates among different systems must be demonstrated. This study is an intercomparison of BSC estimates acquired by three research groups (UIUC, UW, ISU) from four in vivo spontaneous rat mammary fibroadenomas using three clinical array systems and a single-element laboratory scanner system. Because of their highly variable backscatter properties, fibroadenomas provided an extreme test case for BSC analysis, and the comparison is across systems for each tumor, not across the highly heterogeneous tumors. RF echo data spanning the 1 to 12 MHz frequency range were acquired in three dimensions from all animals using each system. Each research group processed their RF data independently, and the resulting attenuation, BSC, and effective scatterer diameter (ESD) estimates were compared. The attenuation estimates across all systems showed the same trends and consistently fit the power-law dependence on frequency. BSCs varied among the multiple slices of data acquired by each transducer, with variations between transducers being of a similar magnitude as those from slice to slice. Variation between BSC estimates was assessed via functional signal-to-noise ratios derived from backscatter data. These functional signal-to-noise ratios indicated that BSC versus frequency variations between systems ranged from negligible compared with the noise level to roughly twice the noise level. The corresponding functional analysis of variance (fANOVA) indicated statistically significant differences between BSC curves from different systems. However, root mean squared difference errors of the BSC values (in decibels) between different transducers and imaging platforms were less than half of the BSC magnitudes in most cases. Statistical comparison of the effective scatterer diameter (ESD) estimates resulted in no significant differences in estimates from three of the four transducers used for those estimates, demonstrating agreement among estimates based on the BSC. This technical advance demonstrates that these in vivo measurements can be made in a system-independent manner; the necessary step toward clinical implementation of the technology.


PLOS ONE | 2016

Photoacoustic Imaging of Cancer Treatment Response: Early Detection of Therapeutic Effect from Thermosensitive Liposomes

Jonathan P. May; Eno Hysi; Lauren A. Wirtzfeld; Elijus Undzys; Shyh-Dar Li; Michael C. Kolios

Imaging methods capable of indicating the potential for success of an individualized treatment course, during or immediately following the treatment, could improve therapeutic outcomes. Temperature Sensitive Liposomes (TSLs) provide an effective way to deliver chemotherapeutics to a localized tumoral area heated to mild-hyperthermia (HT). The high drug levels reached in the tumor vasculature lead to increased tumor regression via the cascade of events during and immediately following treatment. For a TSL carrying doxorubicin (DOX) these include the rapid and intense exposure of endothelial cells to high drug concentrations, hemorrhage, blood coagulation and vascular shutdown. In this study, ultrasound-guided photoacoustic imaging was used to probe the changes to tumors following treatment with the TSL, HaT-DOX (Heat activated cytoToxic). Levels of oxygen saturation (sO2) were studied in a longitudinal manner, from 30 min pre-treatment to 7 days post-treatment. The efficacious treatments of HT-HaT-DOX were shown to induce a significant drop in sO2 (>10%) as early as 30 min post-treatment that led to tumor regression (in 90% of cases); HT-Saline and non-efficacious HT-HaT-DOX (10% of cases) treatments did not show any significant change in sO2 at these timepoints. The changes in sO2 were further corroborated with histological data, using the vascular and perfusion markers CD31 and FITC-lectin. These results allowed us to further surmise a plausible mechanism of the cellular events taking place in the TSL treated tumor regions over the first 24 hours post-treatment. The potential for using photoacoustic imaging to measure tumor sO2 as a surrogate prognostic marker for predicting therapeutic outcome with a TSL treatment is demonstrated.

Collaboration


Dive into the Lauren A. Wirtzfeld's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy J. Hall

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Czarnota

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Elijus Undzys

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

James A. Zagzebski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan P. May

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Shyh-Dar Li

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kibo Nam

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge