Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael C. Kolios is active.

Publication


Featured researches published by Michael C. Kolios.


Physics in Medicine and Biology | 1995

Large blood vessel cooling in heated tissues: a numerical study

Michael C. Kolios; Michael D. Sherar; John W. Hunt

Large blood vessels can produce steep temperature gradients in heated tissues leading to inadequate tissue temperatures during hyperthermia. This paper utilizes a finite difference scheme to solve the basic equations of heat transfer and fluid flow to model blood vessel cooling. Unlike previous formulations, heat transfer coefficients were not used to calculate heat transfer to large blood vessels. Instead, the conservation form of the finite difference equations implicitly modelled this process. Temperature profiles of heated tissues near thermally significant vessels were calculated. Microvascular heat transfer was modelled either as an effective conductivity or a heat sink. An increase in perfusion in both microvascular models results in a reduction of the cooling effects of large vessels. For equivalent perfusion values, the effective conductivity model predicted more effective heating of the blood and adjacent tissue. Furthermore, it was found that optimal vessel heating strategies depend on the microvascular heat transfer model adopted; localized deposition of heat near vessels could produce higher temperature profiles when microvascular heat transfer was modelled according to the bioheat transfer equation (BHTE) but not the effective thermal conductivity equation (ETCE). Reduction of the blood flow through thermally significant vessels was found to be the most effective way of reducing localized cooling.


Physics in Medicine and Biology | 1998

A theoretical comparison of energy sources-microwave, ultrasound and laser-for interstitial thermal therapy

Matthew G Skinner; Megumi N Iizuka; Michael C. Kolios; Michael D. Sherar

A number of heating sources are available for minimally invasive thermal therapy of tumours. The purpose of this work was to compare, theoretically, the heating characteristics of interstitial microwave, laser and ultrasound sources in three tissue sites: breast, brain and liver. Using a numerical method, the heating patterns, temperature profiles and expected volumes of thermal damage were calculated during standard treatment times with the condition that tissue temperatures were not permitted to rise above 100 degrees C (to ensure tissue vaporization did not occur). Ideal spherical and cylindrical applicators (200 microm and 800 microm radii respectively) were modelled for each energy source to demonstrate the relative importance of geometry and energy attenuation in determining heating and thermal damage profiles. The theoretical model included the effects of the collapse of perfusion due to heating. Heating patterns were less dependent on the energy source when small spherical applicators were modelled than for larger cylindrical applicators due to the very rapid geometrical decrease in energy with distance for the spherical applicators. For larger cylindrical applicators, the energy source was of greater importance. In this case, the energy source with the lowest attenuation coefficient was predicted to produce the largest volume of thermally coagulated tissue, in each tissue site.


British Journal of Cancer | 1999

Ultrasound imaging of apoptosis: high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo

G.J. Czarnota; Michael C. Kolios; J Abraham; M Portnoy; F P Ottensmeyer; John W. Hunt; Michael D. Sherar

SummaryA new non-invasive method for monitoring apoptosis has been developed using high frequency (40 MHz) ultrasound imaging. Conventional ultrasound backscatter imaging techniques were used to observe apoptosis occurring in response to anticancer agents in cells in vitro, in tissues ex vivo and in live animals. The mechanism behind this ultrasonic detection was identified experimentally to be the subcellular nuclear changes, condensation followed by fragmentation, that cells undergo during apoptosis. These changes dramatically increase the high frequency ultrasound scattering efficiency of apoptotic cells over normal cells (25- to 50-fold change in intensity). The result is that areas of tissue undergoing apoptosis become much brighter in comparison to surrounding viable tissues. The results provide a framework for the possibility of using high frequency ultrasound imaging in the future to non-invasively monitor the effects of chemotherapeutic agents and other anticancer treatments in experimental animal systems and in patients.


Ultrasound in Medicine and Biology | 2002

Ultrasonic spectral parameter characterization of apoptosis

Michael C. Kolios; Gregory J. Czarnota; M Lee; John W. Hunt; Michael D. Sherar

Ultrasound (US) spectral analysis methods are used to analyze the radiofrequency (RF) data collected from cell pellets exposed to chemotherapeutics that induce apoptosis and other chemicals that induce nuclear transformations. Calibrated backscatter spectra from regions-of-interest (ROI) were analyzed using linear regression techniques to calculate the spectral slope and midband fit. Two f/2 transducers, with operating frequencies of 30 and 34 MHz (relative bandwidths of 93% and 78%, respectively) were used with a custom-made imaging system that enabled the collection of the raw RF data. For apoptotic cells, the spectral slope increased from 0.37 dB/MHz before drug exposure to 0.57 dB/MHz 24 h after, corresponding to a change in effective scatterer radius from 8.7 to 3.2 microm. The midband fit increased in a time-dependent fashion, peaking at 13dB 24 h after exposure. The statistical deviation of the spectral parameters was in close agreement with theoretical predictions. The results provide a framework for using spectral parameter methods to monitor apoptosis in in vitro and in in vivo systems and are being used to guide the design of system and signal analysis parameters.


Cancer Research | 2008

Ultrasound Imaging of Apoptosis in Tumor Response: Novel Preclinical Monitoring of Photodynamic Therapy Effects

Behzad Banihashemi; Roxana M. Vlad; Branislav Debeljevic; Anoja Giles; Michael C. Kolios; Gregory J. Czarnota

High-frequency ultrasound is a novel method to detect apoptotic cell death based on changes in cell morphology that cause alterations in the viscoelastic and, consequently, the acoustic properties of cell ensembles and tissues. In this study, we evaluated the first preclinical tumor-based use of high-frequency ultrasound spectroscopy to noninvasively monitor tumor treatment by following xenograft malignant melanoma tumor responses to photodynamic therapy (PDT) in vivo. We observed a time-dependant increase in ultrasound backscatter variables after treatment. The observed increases in spectroscopic variables correlated with morphologic findings, indicating increases in apoptotic cell death, which peaked at 24 hours after PDT. We analyzed the changes in spectral slope and backscatter in relation to apoptosis and histologic variations in cell nuclear size. Changes in spectral slope strongly correlated with the changes in mean nuclear size over time, associated with apoptosis, after PDT (P < 0.05). At 48 hours, a decrease in ultrasound backscatter was observed, which could be explained by an increase in cell nuclear degradation. In summary, we show that high-frequency ultrasound spectroscopic variables can be used noninvasively to monitor response after treatment in a preclinical tumor cancer model. These findings provide a foundation for future investigations regarding the use of ultrasound to monitor and aid the customization of treatments noninvasively based on responses to specific interventions.


Ultrasound in Medicine and Biology | 1997

Ultrasonic biomicroscopy of viable, dead and apoptotic cells

Gregory J. Czarnota; Michael C. Kolios; Homayoun Vaziri; Sam Benchimol; F.Peter Ottensmeyer; Michael D. Sherar; John W. Hunt

Ultrasonic imaging is frequently used in medical diagnosis to differentiate normal and tumour tissues. Here we investigate if distinct types of cell death can be discriminated through the use of ultrasound biomicroscopy. By using a well-controlled system in vitro, we demonstrate that this imaging modality can be used to differentiate living cells, dead cells and cells that have died by programmed cell death or apoptosis. The results indicate a greater than twofold ultrasound backscatter signal from apoptotic cells in comparison to viable cells, whereas heat-killed cells exhibit an intermediate level of ultrasound backscatter. The results have potential implications in the study of disease-related biological processes involving apoptosis.


Journal of the Acoustical Society of America | 2005

High-frequency ultrasound scattering from microspheres and single cells

Ralph E. Baddour; Michael Sherar; John W. Hunt; G.J. Czarnota; Michael C. Kolios

Assessing the proportion of biological cells in a volume of interest undergoing structural changes, such as cell death, using high-frequency ultrasound (20-100 MHz), requires the development of a theoretical model of scattering by any arbitrary cell ensemble. A prerequisite to building such a model is to know the scattering by a single cell in different states. In this paper, a simple model for the high-frequency acoustic scattering by one cell is proposed. A method for deducing the backscatter transfer function from a single, subresolution scatterer is also devised. Using this method, experimental measurements of backscatter from homogeneous, subresolution polystyrene microspheres and single, viable eukaryotic cells, acquired across a broad, continuous range of frequencies were compared with elastic scattering theory and the proposed cell scattering model, respectively. The resonant features observed in the backscatter transfer function of microspheres were found to correspond accurately to theoretical predictions. Using the spacing of the major spectral peaks in the transfer functions obtained experimentally, it is possible to predict microsphere diameters with less than 4% error. Such good agreement was not seen between the cell model and the measured backscatter from cells. Possible reasons for this discrepancy are discussed.


Clinical Cancer Research | 2009

Quantitative Ultrasound Characterization of Responses to Radiotherapy in Cancer Mouse Models

Roxana M. Vlad; Sebastian Brand; Anoja Giles; Michael C. Kolios; Gregory J. Czarnota

Purpose: Currently, no imaging modality is used routinely to assess tumor responses to radiotherapy within hours to days after the delivery of treatment. In this study, we show the application of quantitative ultrasound methods to characterize tumor responses to cancer radiotherapy in vivo, as early as 24 hours after treatment administration. Experimental Design: Three mouse models of head and neck cancer were exposed to radiation doses of 0, 2, 4, and 8 Gray. Data were collected with an ultrasound scanner using frequencies of 10 to 30 MHz. Ultrasound estimates calculated from normalized power spectra and parametric images (spatial maps of local estimates of ultrasound parameters) were used as indicators of response. Results: Two of the mouse models (FaDu and C666-1) exhibited large hyperechoic regions at 24 hours after radiotherapy. The ultrasound integrated backscatter increased by 6.5 to 8.2 dB (P < 0.001) and the spectral slopes increased from 0.77 to 0.90 dB/MHz for the C666-1 tumors and from 0.54 to 0.78 dB/MHz for the FaDu tumors (P < 0.05), in these regions compared with preirradiated tumors. The hyperechoic regions in the ultrasound images corresponded in histology to areas of cell death. Parametric images could discern the tumor regions that responded to treatment. The other cancer mouse model (Hep-2) was resistant to radiotherapy. Conclusions: The results indicate that cell structural changes after radiotherapy have a significant influence on ultrasound spectral parameters. This provides a foundation for future investigations regarding the use of ultrasound in cancer patients to individualize treatments noninvasively based on their responses to specific interventions.


Medical Physics | 1996

Blood flow cooling and ultrasonic lesion formation

Michael C. Kolios; Michael D. Sherar; John W. Hunt

This article examines lesion formation using focused ultrasound and demonstrates how blood flow may affect lesion dimensions using a theoretical model. The effects of blood flow on temperature distributions during ultrasonic lesioning are examined for both regional cooling by the microvasculature and localized cooling due to thermally significant vessels. Regional cooling was critically assessed using two models: the Pennes bioheat transfer equation and the scalar effective thermal conductivity equation. Localized cooling was modeled by adding an advective term in the heat diffusion equation in regions enclosed by thermally significant vessels. A finite difference approach was used to solve the basic equations of heat transfer in perfused tissues in cylindrical coordinates. The extent of the lesioned tissue was determined by the accumulated thermal dose at each location. The size of the lesion was then calculated from the boundaries of the thermal isodose curves generated by the simulations. The results were compared to published in vivo lesion data in rat liver. It was shown that even for short ultrasound exposure times (approximately 8 s), blood flow may play an important role in the thermal dose distribution.


International Journal of Radiation Oncology Biology Physics | 2008

Quantitative Ultrasound Characterization of Cancer Radiotherapy Effects In Vitro

Roxana M. Vlad; Nehad M. Alajez; Anoja Giles; Michael C. Kolios; Gregory J. Czarnota

PURPOSE Currently, no routinely used imaging modality is available to assess tumor responses to cancer treatment within hours to days after radiotherapy. In this study, we demonstrate the preclinical application of quantitative ultrasound methods to characterize the cellular responses to cancer radiotherapy in vitro. METHODS AND MATERIALS Three different cell lines were exposed to radiation doses of 2-8 Gy. Data were collected with an ultrasound scanner using frequencies of 10-30 MHz. As indicators of response, ultrasound integrated backscatter and spectral slope were determined from the cell samples. These parameters were corrected for ultrasonic attenuation by measuring the attenuation coefficient. RESULTS A significant increase in the ultrasound integrated backscatter of 4-7 dB (p < 0.001) was found for radiation-treated cells compared with viable cells at all radiation doses. The spectral slopes decreased in the cell samples that predominantly underwent mitotic arrest/catastrophe after radiotherapy, consistent with an increase in cell size. In contrast, the spectral slopes did not change significantly in the cell samples that underwent a mix of cell death (apoptosis and mitotic arrest), with no significant change in average cell size. CONCLUSION The changes in ultrasound integrated backscatter and spectral slope were direct consequences of cell and nuclear morphologic changes associated with cell death. The results indicate that this combination of quantitative ultrasonic parameters has the potential to assess the cell responses to radiation, differentiate between different types of cell death, and provide a preclinical framework to monitor tumor responses in vivo.

Collaboration


Dive into the Michael C. Kolios's collaboration.

Top Co-Authors

Avatar

Gregory J. Czarnota

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anoja Giles

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge