Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren Ambrogio is active.

Publication


Featured researches published by Lauren Ambrogio.


Nature | 2013

Mutational heterogeneity in cancer and the search for new cancer-associated genes.

Michael S. Lawrence; Petar Stojanov; Paz Polak; Gregory V. Kryukov; Kristian Cibulskis; Andrey Sivachenko; Scott L. Carter; Chip Stewart; Craig H. Mermel; Steven A. Roberts; Adam Kiezun; Peter S. Hammerman; Aaron McKenna; Yotam Drier; Lihua Zou; Alex H. Ramos; Trevor J. Pugh; Nicolas Stransky; Elena Helman; Jaegil Kim; Carrie Sougnez; Lauren Ambrogio; Elizabeth Nickerson; Erica Shefler; Maria L. Cortes; Daniel Auclair; Gordon Saksena; Douglas Voet; Michael S. Noble; Daniel DiCara

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Nature | 2011

The genomic complexity of primary human prostate cancer

Michael F. Berger; Michael S. Lawrence; Francesca Demichelis; Yotam Drier; Kristian Cibulskis; Andrey Sivachenko; Andrea Sboner; Raquel Esgueva; Dorothee Pflueger; Carrie Sougnez; Robert C. Onofrio; Scott L. Carter; Kyung Park; Lukas Habegger; Lauren Ambrogio; Timothy Fennell; Melissa Parkin; Gordon Saksena; Douglas Voet; Alex H. Ramos; Trevor J. Pugh; Jane Wilkinson; Sheila Fisher; Wendy Winckler; Scott Mahan; Kristin Ardlie; Jennifer Baldwin; Jonathan W. Simons; Naoki Kitabayashi; Theresa Y. MacDonald

Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced (that is, ‘copy-neutral’) rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2–ERG, but inversely correlated with these regions in tumours lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumours contained rearrangements that disrupted CADM2, and four harboured events disrupting either PTEN (unbalanced events), a prostate tumour suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies and engage prostate tumorigenic mechanisms.


Oncogene | 2008

BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models

Danan Li; Lauren Ambrogio; Takeshi Shimamura; Shigeto Kubo; Masaya Takahashi; Lucian R. Chirieac; Robert F. Padera; Geoffrey I. Shapiro; Anke Baum; Himmelsbach F; Wolfgang J. Rettig; Matthew Meyerson; Flavio Solca; Heidi Greulich; Kwok-Kin Wong

Genetic alterations in the kinase domain of the epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) patients are associated with sensitivity to treatment with small molecule tyrosine kinase inhibitors. Although first-generation reversible, ATP-competitive inhibitors showed encouraging clinical responses in lung adenocarcinoma tumors harboring such EGFR mutations, almost all patients developed resistance to these inhibitors over time. Such resistance to first-generation EGFR inhibitors was frequently linked to an acquired T790M point mutation in the kinase domain of EGFR, or upregulation of signaling pathways downstream of HER3. Overcoming these mechanisms of resistance, as well as primary resistance to reversible EGFR inhibitors driven by a subset of EGFR mutations, will be necessary for development of an effective targeted therapy regimen. Here, we show that BIBW2992, an anilino-quinazoline designed to irreversibly bind EGFR and HER2, potently suppresses the kinase activity of wild-type and activated EGFR and HER2 mutants, including erlotinib-resistant isoforms. Consistent with this activity, BIBW2992 suppresses transformation in isogenic cell-based assays, inhibits survival of cancer cell lines and induces tumor regression in xenograft and transgenic lung cancer models, with superior activity over erlotinib. These findings encourage further testing of BIBW2992 in lung cancer patients harboring EGFR or HER2 oncogenes.


Nature | 2012

Melanoma genome sequencing reveals frequent PREX2 mutations

Michael F. Berger; Eran Hodis; Timothy P. Heffernan; Yonathan Lissanu Deribe; Michael S. Lawrence; Alexei Protopopov; Elena S Ivanova; Ian R. Watson; Elizabeth Nickerson; Papia Ghosh; Hailei Zhang; Rhamy Zeid; Xiaojia Ren; Kristian Cibulskis; Andrey Sivachenko; Nikhil Wagle; Antje Sucker; Carrie Sougnez; Robert C. Onofrio; Lauren Ambrogio; Daniel Auclair; Timothy Fennell; Scott L. Carter; Yotam Drier; Petar Stojanov; Meredith A. Singer; Douglas Voet; Rui Jing; Gordon Saksena; Jordi Barretina

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5–55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)—a PTEN-interacting protein and negative regulator of PTEN in breast cancer—as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.


Cell | 2007

Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene

Jesse S. Boehm; Jean Zhao; Jun Yao; So Young Kim; Ron Firestein; Ian F. Dunn; Sarah K. Sjostrom; Levi A. Garraway; Stanislawa Weremowicz; Andrea L. Richardson; Heidi Greulich; Carly J. Stewart; Laura Mulvey; Rhine R. Shen; Lauren Ambrogio; Tomoko Hirozane-Kishikawa; David E. Hill; Marc Vidal; Matthew Meyerson; Jennifer K. Grenier; Greg Hinkle; David E. Root; Thomas M. Roberts; Eric S. Lander; Kornelia Polyak; William C. Hahn

The karyotypic chaos exhibited by human epithelial cancers complicates efforts to identify mutations critical for malignant transformation. Here we integrate complementary genomic approaches to identify human oncogenes. We show that activation of the ERK and phosphatidylinositol 3-kinase (PI3K) signaling pathways cooperate to transform human cells. Using a library of activated kinases, we identify several kinases that replace PI3K signaling and render cells tumorigenic. Whole genome structural analyses reveal that one of these kinases, IKBKE (IKKepsilon), is amplified and overexpressed in breast cancer cell lines and patient-derived tumors. Suppression of IKKepsilon expression in breast cancer cell lines that harbor IKBKE amplifications induces cell death. IKKepsilon activates the nuclear factor-kappaB (NF-kappaB) pathway in both cell lines and breast cancers. These observations suggest a mechanism for NF-kappaB activation in breast cancer, implicate the NF-kappaB pathway as a downstream mediator of PI3K, and provide a framework for integrated genomic approaches in oncogene discovery.


Nature | 2014

Landscape of genomic alterations in cervical carcinomas

Akinyemi I. Ojesina; Lee Lichtenstein; Samuel S. Freeman; Chandra Sekhar Pedamallu; Ivan Imaz-Rosshandler; Trevor J. Pugh; Andrew D. Cherniack; Lauren Ambrogio; Kristian Cibulskis; Bjørn Enge Bertelsen; Sandra Romero-Cordoba; Victor Trevino; Karla Vazquez-Santillan; Alberto Salido Guadarrama; Alexi A. Wright; Mara Rosenberg; Fujiko Duke; Bethany Kaplan; Rui Wang; Elizabeth Nickerson; Heather M. Walline; Michael S. Lawrence; Chip Stewart; Scott L. Carter; Aaron McKenna; Iram P. Rodriguez-Sanchez; Magali Espinosa-Castilla; Kathrine Woie; Line Bjørge; Elisabeth Wik

Cervical cancer is responsible for 10–15% of cancer-related deaths in women worldwide. The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established. Previous studies have also implicated somatic mutations in PIK3CA, PTEN, TP53, STK11 and KRAS as well as several copy-number alterations in the pathogenesis of cervical carcinomas. Here we report whole-exome sequencing analysis of 115 cervical carcinoma–normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour–normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.


Genome Biology | 2011

A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries

Sheila Fisher; Andrew Barry; Justin Abreu; Brian Minie; Jillian Nolan; Toni Delorey; Geneva Young; Timothy Fennell; Alexander Allen; Lauren Ambrogio; Aaron M. Berlin; Brendan Blumenstiel; Kristian Cibulskis; Dennis Friedrich; Ryan Johnson; Frank Juhn; Brian Reilly; Ramy Shammas; John Stalker; Sean Sykes; Jon Thompson; John Jarlath Walsh; Andrew Zimmer; Zac Zwirko; Stacey Gabriel; Robert Nicol; Chad Nusbaum

Genome targeting methods enable cost-effective capture of specific subsets of the genome for sequencing. We present here an automated, highly scalable method for carrying out the Solution Hybrid Selection capture approach that provides a dramatic increase in scale and throughput of sequence-ready libraries produced. Significant process improvements and a series of in-process quality control checkpoints are also added. These process improvements can also be used in a manual version of the protocol.


Nature Genetics | 2013

Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors.

Juliann Chmielecki; Aimee M. Crago; Mara Rosenberg; Rachael O'Connor; Sarah R. Walker; Lauren Ambrogio; Daniel Auclair; Aaron McKenna; Michael C. Heinrich; David A. Frank; Matthew Meyerson

Solitary fibrous tumors (SFTs) are rare mesenchymal tumors. Here, we describe the identification of a NAB2-STAT6 fusion from whole-exome sequencing of 17 SFTs. Analysis in 53 tumors confirmed the presence of 7 variants of this fusion transcript in 29 tumors (55%), representing a lower bound for fusion frequency at this locus and suggesting that the NAB2-STAT6 fusion is a distinct molecular feature of SFTs.


Journal of Clinical Investigation | 2012

A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers

Ryan S. Lee; Chip Stewart; Scott L. Carter; Lauren Ambrogio; Kristian Cibulskis; Carrie Sougnez; Michael S. Lawrence; Daniel Auclair; Jaume Mora; Todd R. Golub; Jaclyn A. Biegel; Gad Getz; Charles W. M. Roberts

Cancer is principally considered a genetic disease, and numerous mutations are thought essential to drive its growth. However, the existence of genomically stable cancers and the emergence of mutations in genes that encode chromatin remodelers raise the possibility that perturbation of chromatin structure and epigenetic regulation are capable of driving cancer formation. Here we sequenced the exomes of 35 rhabdoid tumors, highly aggressive cancers of early childhood characterized by biallelic loss of SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex. We identified an extremely low rate of mutation, with loss of SMARCB1 being essentially the sole recurrent event. Indeed, in 2 of the cancers there were no other identified mutations. Our results demonstrate that high mutation rates are dispensable for the genesis of cancers driven by mutation of a chromatin remodeling complex. Consequently, cancer can be a remarkably genetically simple disease.


Cancer Discovery | 2014

Comprehensive Genomic Analysis of Rhabdomyosarcoma Reveals a Landscape of Alterations Affecting a Common Genetic Axis in Fusion-Positive and Fusion-Negative Tumors

Jack F. Shern; Li Chen; Juliann Chmielecki; Jun S. Wei; Rajesh Patidar; Mara Rosenberg; Lauren Ambrogio; Daniel Auclair; Jianjun Wang; Young K. Song; Catherine Tolman; Laura Hurd; Hongling Liao; Shile Zhang; Dominik Bogen; Andrew S. Brohl; Sivasish Sindiri; Daniel Catchpoole; Thomas C. Badgett; Gad Getz; Jaume Mora; James R. Anderson; Stephen X. Skapek; Frederic G. Barr; Matthew Meyerson; Douglas S. Hawkins; Javed Khan

UNLABELLED Despite gains in survival, outcomes for patients with metastatic or recurrent rhabdomyosarcoma remain dismal. In a collaboration between the National Cancer Institute, Childrens Oncology Group, and Broad Institute, we performed whole-genome, whole-exome, and transcriptome sequencing to characterize the landscape of somatic alterations in 147 tumor/normal pairs. Two genotypes are evident in rhabdomyosarcoma tumors: those characterized by the PAX3 or PAX7 fusion and those that lack these fusions but harbor mutations in key signaling pathways. The overall burden of somatic mutations in rhabdomyosarcoma is relatively low, especially in tumors that harbor a PAX3/7 gene fusion. In addition to previously reported mutations in NRAS, KRAS, HRAS, FGFR4, PIK3CA, and CTNNB1, we found novel recurrent mutations in FBXW7 and BCOR, providing potential new avenues for therapeutic intervention. Furthermore, alteration of the receptor tyrosine kinase/RAS/PIK3CA axis affects 93% of cases, providing a framework for genomics-directed therapies that might improve outcomes for patients with rhabdomyosarcoma. SIGNIFICANCE This is the most comprehensive genomic analysis of rhabdomyosarcoma to date. Despite a relatively low mutation rate, multiple genes were recurrently altered, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. In addition, a majority of rhabdomyosarcoma tumors alter the receptor tyrosine kinase/RAS/PIK3CA axis, providing an opportunity for genomics-guided intervention.

Collaboration


Dive into the Lauren Ambrogio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron McKenna

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge