Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren B. Buckley is active.

Publication


Featured researches published by Lauren B. Buckley.


Ecology Letters | 2010

Niche conservatism as an emerging principle in ecology and conservation biology.

John J. Wiens; David D. Ackerly; Andrew P. Allen; Brian L. Anacker; Lauren B. Buckley; Howard V. Cornell; Ellen I. Damschen; T. Jonathan Davies; John-Arvid Grytnes; Susan Harrison; Bradford A. Hawkins; Robert D. Holt; Christy M. McCain; Patrick R. Stephens

The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within-species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?).


Science | 2011

The Pace of Shifting Climate in Marine and Terrestrial Ecosystems

Michael T. Burrows; David S. Schoeman; Lauren B. Buckley; Pippa J. Moore; Elvira S. Poloczanska; Keith Brander; Christopher J. Brown; John F. Bruno; Carlos M. Duarte; Benjamin S. Halpern; Johnna Holding; Carrie V. Kappel; Wolfgang Kiessling; Mary I. O'Connor; John M. Pandolfi; Camille Parmesan; Franklin B. Schwing; William J. Sydeman; Anthony J. Richardson

Ecologically relevant measures of contemporary global climate change can predict species distributions and vulnerabilities. Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts.


Ecology Letters | 2010

Can mechanism inform species’ distribution models?

Lauren B. Buckley; Mark C. Urban; Michael J. Angilletta; Lisa G. Crozier; Leslie J. Rissler; Michael W. Sears

Two major approaches address the need to predict species distributions in response to environmental changes. Correlative models estimate parameters phenomenologically by relating current distributions to environmental conditions. By contrast, mechanistic models incorporate explicit relationships between environmental conditions and organismal performance, estimated independently of current distributions. Mechanistic approaches include models that translate environmental conditions into biologically relevant metrics (e.g. potential duration of activity), models that capture environmental sensitivities of survivorship and fecundity, and models that use energetics to link environmental conditions and demography. We compared how two correlative and three mechanistic models predicted the ranges of two species: a skipper butterfly (Atalopedes campestris) and a fence lizard (Sceloporus undulatus). Correlative and mechanistic models performed similarly in predicting current distributions, but mechanistic models predicted larger range shifts in response to climate change. Although mechanistic models theoretically should provide more accurate distribution predictions, there is much potential for improving their flexibility and performance.


Nature | 2014

Geographical limits to species-range shifts are suggested by climate velocity

Michael T. Burrows; David S. Schoeman; Anthony J. Richardson; Jorge García Molinos; Ary A. Hoffmann; Lauren B. Buckley; Pippa J. Moore; Christopher J. Brown; John F. Bruno; Carlos M. Duarte; Benjamin S. Halpern; Ove Hoegh-Guldberg; Carrie V. Kappel; Wolfgang Kiessling; Mary I. O'Connor; John M. Pandolfi; Camille Parmesan; William J. Sydeman; Simon Ferrier; Kristen J. Williams; Elvira S. Poloczanska

The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the ‘business as usual’ climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.


The American Naturalist | 2008

Linking Traits to Energetics and Population Dynamics to Predict Lizard Ranges in Changing Environments

Lauren B. Buckley

I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how geographic variation in traits and life histories influences ranges. This geographic variation reflects the potential for species to adapt to environmental change. I then consider the range dynamics of the closely related Sceloporus graciosus. Comparing predicted ranges and actual current ranges reveals how dispersal limitations, species interactions, and habitat requirements influence the occupied portions of thermally suitable ranges. The dynamic model predicts individualistic responses to a uniform 3°C warming but a northward shift in the northern range boundary for all populations and species. In contrast to standard correlative climate envelope models, the extent of the predicted northward shift depends on organism traits and life histories. The results highlight the limitations of correlative models and the need for more dynamic models of species’ ranges.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Linking global turnover of species and environments

Lauren B. Buckley; Walter Jetz

Patterns of species turnover are central to the geography of biodiversity and resulting challenges for conservation, but at broad scales remain relatively little understood. Here, we take a first spatially-explicitly and global perspective to link the spatial turnover of species and environments. We compare how major groups of vertebrate ectotherms (amphibians) and endotherms (birds) respond to spatial environmental gradients. We find that high levels of species turnover occur regardless of environmental turnover rates, but environmental turnover provides a lower bound for species turnover. This lower bound increases more steeply with environmental turnover in tropical realms. While bird and amphibian turnover rates are correlated, the rate of amphibian turnover is four times steeper than bird rates. This is the same factor by which average geographic ranges of birds are larger than those of amphibians. Narrow-ranged birds exhibit rapid rates of species turnover similar to those for amphibians, while wide-ranged birds largely drive the aggregate patterns of avian turnover. We confirm a strong influence of the environment on species turnover that is mediated by range sizes and regional history. In contrast to geographic patterns of species richness, we find that the turnover in one group (amphibians) is a much better predictor for the turnover in another (birds) than is environment. This result confirms the role of amphibian sensitivity to environmental conditions for patterns of turnover and supports their value as a surrogate group. This spatially-explicit analysis of environmental turnover provides understanding for conservation planning in changing environments.


Integrative and Comparative Biology | 2011

Complex Life Cycles and the Responses of Insects to Climate Change

Joel G. Kingsolver; H. Arthur Woods; Lauren B. Buckley; Kristen A. Potter; Heidi J. MacLean; Jessica K. Higgins

Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals

Lauren B. Buckley; T. Jonathan Davies; David D. Ackerly; Nathan J. B. Kraft; Susan P. Harrison; Brian L. Anacker; Howard V. Cornell; Ellen I. Damschen; John Avid Grytnes; Bradford A. Hawkins; Christy M. McCain; Patrick R. Stephens; John J. Wiens

Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.


Frontiers in Ecology and the Environment | 2014

Macrosystems ecology: understanding ecological patterns and processes at continental scales

James B. Heffernan; Patricia A. Soranno; Michael J Angilletta; Lauren B. Buckley; Daniel S. Gruner; Timothy H. Keitt; James R. Kellner; John S Kominoski; Adrian V. Rocha; Jingfeng Xiao; Tamara K. Harms; Simon Goring; Lauren E. Koenig; William H. McDowell; Heather Powell; Andrew D. Richardson; Craig A. Stow; Rodrigo Vargas; Kathleen C. Weathers

Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisci- plines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents.


Functional Ecology | 2013

Heat stress and the fitness consequences of climate change for terrestrial ectotherms

Joel G. Kingsolver; Sarah E. Diamond; Lauren B. Buckley

Summary Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–2100), by modelling thermal performance curves (TPCs) for insect species across latitudes. In temperate regions, climate change increased the length of the growing season (increasing fitness) and increased the frequency of heat stress (decreasing fitness). Consequently, species at mid-latitudes (20–40°) showed pronounced but heterogeneous responses to climate change. Fitness decreases for these species were accompanied by greater interannual variation in fitness. An alternative TPC model and a larger data set gave qualitatively similar results. How close maximum summer temperatures are to the critical thermal maximum of a species – the thermal buffer – is a good predictor of the change in mean fitness expected under climate change. Thermal buffers will decrease to near or below zero by 2100 for many tropical and mid-latitude species. Our forecasts suggest that mid-latitude species will be particularly susceptible to heat stress associated with climate change due to temperature variation.

Collaboration


Dive into the Lauren B. Buckley's collaboration.

Top Co-Authors

Avatar

Joel G. Kingsolver

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Richardson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Carlos M. Duarte

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Burrows

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar

Camille Parmesan

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge