Lauren C.J. Baker
Institute of Cancer Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauren C.J. Baker.
British Journal of Cancer | 2012
Lauren C.J. Baker; Jessica K.R. Boult; Simon Walker-Samuel; Yuen-Li Chung; Yann Jamin; Margaret Ashcroft; Simon P. Robinson
Background:Hypoxia-inducible factor-1 (HIF-1) mediates the transcriptional response to hypoxic stress, promoting tumour progression and survival. This study investigated the acute effects of the small-molecule HIF-pathway inhibitor NSC-134754.Methods:Human PC-3LN5 prostate cancer cells were treated with NSC-134754 for 24 h in hypoxia. Orthotopic prostate tumour-bearing mice were treated with a single dose of NSC-134754 for 6, 24 or 48 h. Treatment response was measured using magnetic resonance spectroscopy and imaging. Ex-vivo histological validation of imaging findings was also sought.Results:In vitro, NSC-134754 significantly reduced lactate production and glucose uptake (P<0.05), while significantly increasing intracellular glucose (P<0.01) and glutamine uptake/metabolism (P<0.05). Increased glutamine metabolism was independent of c-Myc, a factor also downregulated by NSC-134754. In vivo, a significantly higher tumour apparent diffusion coefficient was determined 24 h post-treatment (P<0.05), with significantly higher tumour necrosis after 48 h (P<0.05). NSC-134754-treated tumours revealed lower expression of HIF-1α and glucose transporter-1, at 6 and 24 h respectively, while a transient increase in tumour hypoxia was observed after 24 h. Vessel perfusion/flow and vascular endothelial growth factor levels were unchanged with treatment.Conclusion:NSC-134754 induces metabolic alterations in vitro and early anti-tumour activity in vivo, independent of changes in vascular function. Our data support the further evaluation of NSC-134754 as an anti-cancer agent.
Journal of Magnetic Resonance Imaging | 2013
Jake S. Burrell; Simon Walker-Samuel; Lauren C.J. Baker; Jessica K.R. Boult; Yann Jamin; Jane Halliday; John C. Waterton; Simon P. Robinson
To investigate the combined use of hyperoxia‐induced ΔR2* and ΔR1 as a noninvasive imaging biomarker of tumor hypoxia.
Radiology | 2013
Yann Jamin; Elizabeth R. Tucker; Evon Poon; Sergey Popov; Lynsey Vaughan; Jessica K.R. Boult; Hannah Webber; Albert Hallsworth; Lauren C.J. Baker; Chris Jones; Dow-Mu Koh; Andrew D.J. Pearson; Louis Chesler; Simon P. Robinson
PURPOSE To evaluate noninvasive and clinically translatable magnetic resonance (MR) imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of aggressive, MYCN-amplified neuroblastoma. MATERIALS AND METHODS All experiments were performed in accordance with the local ethical review panel and the UK Home Office Animals Scientific Procedures Act 1986 and with the UK National Cancer Research Institute guidelines for the welfare of animals in cancer research. Multiparametric MR imaging was performed of abdominal tumors found in the TH-MYCN model. T2-weighted MR imaging, quantitation of native relaxation times T1 and T2, the relaxation rate R2*, and dynamic contrast-enhanced MR imaging were used to monitor tumor response to cyclophosphamide (25 mg/kg), the vascular disrupting agent ZD6126 (200 mg/kg), or the antiangiogenic agent cediranib (6 mg/kg, daily). Any significant changes in the measured parameters, and in the magnitude of the changes after treatment between treated and control cohorts, were identified by using Student two-tailed paired and unpaired t test, respectively, with a 5% level of significance. RESULTS Treatment with cyclophosphamide or cediranib induced a 54% or 20% reduction in tumor volume at 48 hours, respectively (P < .005 and P < .005, respectively; P < .005 and P < .005 versus control, respectively). Treatment with ZD6126 induced a 45% reduction in mean tumor volume 24 hours after treatment (P < .005; P < .005 versus control). The antitumor activity of cyclophosphamide, cediranib, and ZD6126 was consistently associated with a decrease in tumor T1 (P < .005, P < .005, and P < .005, respectively; P < .005, P < .005, and P < .005 versus control, respectively) and with a correlation between therapy-induced changes in native T1 and changes in tumor volume (r = 0.56; P < .005). Tumor response to cediranib was also associated with a decrease in the dynamic contrast-enhanced MR imaging-derived volume transfer constant (P = .07; P < .05 versus control) and enhancing fraction (P < .05; P < .01 versus control), and an increase in R2* (P < .005; P < .05 versus control). CONCLUSION The T1 relaxation time is a robust noninvasive imaging biomarker of response to therapy in tumors in TH-MYCN mice, which emulate high-risk neuroblastoma in children. T1 measurements can be readily implemented on clinical MR systems and should be investigated in translational clinical trials of new targeted therapies for pediatric neuroblastoma. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120128/-/DC1.
International Journal of Radiation Oncology Biology Physics | 2013
Lauren C.J. Baker; Jessica K.R. Boult; Yann Jamin; Lesley D. Gilmour; Simon Walker-Samuel; Jake S. Burrell; Margaret Ashcroft; Franklyn A. Howe; John R. Griffiths; James A. Raleigh; Albert J. van der Kogel; Simon P. Robinson
PURPOSE To evaluate and histologically qualify carbogen-induced ΔR2 as a noninvasive magnetic resonance imaging biomarker of improved tumor oxygenation using a double 2-nitroimidazole hypoxia marker approach. METHODS AND MATERIALS Multigradient echo images were acquired from mice bearing GH3 prolactinomas, preadministered with the hypoxia marker CCI-103F, to quantify tumor R2 during air breathing. With the mouse remaining positioned within the magnet bore, the gas supply was switched to carbogen (95% O2, 5% CO2), during which a second hypoxia marker, pimonidazole, was administered via an intraperitoneal line, and an additional set of identical multigradient echo images acquired to quantify any changes in tumor R2. Hypoxic fraction was quantified histologically using immunofluorescence detection of CCI-103F and pimonidazole adduct formation from the same whole tumor section. Carbogen-induced changes in tumor pO2 were further validated using the Oxylite fiberoptic probe. RESULTS Carbogen challenge significantly reduced mean tumor R2 from 116 ± 13 s(-1) to 97 ± 9 s(-1) (P<.05). This was associated with a significantly lower pimonidazole adduct area (2.3 ± 1%), compared with CCI-103F (6.3 ± 2%) (P<.05). A significant correlation was observed between ΔR2 and Δhypoxic fraction (r=0.55, P<.01). Mean tumor pO2 during carbogen breathing significantly increased from 6.3 ± 2.2 mm Hg to 36.0 ± 7.5 mm Hg (P<.01). CONCLUSIONS The combined use of intrinsic susceptibility magnetic resonance imaging with a double hypoxia marker approach corroborates carbogen-induced ΔR2 as a noninvasive imaging biomarker of increased tumor oxygenation.
Microvascular Research | 2012
Jake S. Burrell; Robert S. Bradley; Simon Walker-Samuel; Yann Jamin; Lauren C.J. Baker; Jessica K.R. Boult; Philip J. Withers; Jane Halliday; John C. Waterton; Simon P. Robinson
Vessel size index (R(v), μm) has been proposed as a quantitative magnetic resonance imaging (MRI) derived imaging biomarker in oncology, for the non-invasive assessment of tumour blood vessel architecture and vascular targeted therapies. Appropriate pre-clinical evaluation of R(v) in animal tumour models will improve the interpretation and guide the introduction of the biomarker into clinical studies. The objective of this study was to compare R(v) measured in vivo with vessel size measurements from high-resolution X-ray computed tomography (μCT) of vascular corrosion casts measured post mortem from the same tumours, with and without vascular targeted therapy. MRI measurements were first acquired from subcutaneous SW1222 colorectal xenografts in mice following treatment with 0 (n=6), 30 (n=6) or 200 mg/kg (n=3) of the vascular disrupting agent ZD6126. The mice were then immediately infused with a low viscosity resin and, following polymerisation and maceration of surrounding tissues, the resulting tumour vascular casts were dissected and subsequently imaged using an optimised μCT imaging approach. Vessel diameters were not measurable by μCT in the 200 mg/kg group as the high dose of ZD6126 precluded delivery of the resin to the tumour vascular bed. The mean R(v) for the three treatment groups was 24, 23 and 23.5 μm respectively; the corresponding μCT measurements from corrosion casts from the 0 and 30 mg/kg cohorts were 25 and 28 μm. The strong association between the in vivo MRI and post mortem μCT values supports the use of R(v) as an imaging biomarker in clinical trials of investigational vascular targeted therapies.
Magnetic Resonance in Medicine | 2011
Jake S. Burrell; Simon Walker-Samuel; Lauren C.J. Baker; Jessica K.R. Boult; Anderson J. Ryan; John C. Waterton; Jane Halliday; Simon P. Robinson
A combined carbogen ultrasmall superparamagnetic iron oxide (USPIO) imaging protocol was developed and applied in vivo in two murine colorectal tumor xenograft models, HCT116 and SW1222, with established disparate vascular morphology, to investigate whether additional information could be extracted from the combination of two susceptibility MRI biomarkers. Tumors were imaged before and during carbogen breathing and subsequently following intravenous administration of USPIO particles. A novel segmentation method was applied to the image data, from which six categories of R2* response were identified, and compared with histological analysis of the vasculature. In particular, a strong association between a negative ΔR2*carbogen followed by positive ΔR2*USPIO with the uptake of the perfusion marker Hoechst 33342 was determined. Regions of tumor tissue where there was a significant ΔR2*carbogen but no significant ΔR2*USPIO were also identified, suggesting these regions became temporally isolated from the vascular supply during the experimental timecourse. These areas correlated with regions of tumor tissue where there was CD31 staining but no Hoechst 33342 uptake. Significantly, different combined carbogen USPIO responses were determined between the two tumor models. Combining ΔR2*carbogen and ΔR2*USPIO with a novel segmentation scheme can facilitate the interpretation of susceptibility contrast MRI data and enable a deeper interrogation of tumor vascular function and architecture. Magn Reson Med 66:227–234, 2011.
British Journal of Cancer | 2016
Lauren C.J. Baker; Jessica K.R. Boult; Markus Thomas; Astrid Koehler; Tapan Nayak; Jean Tessier; Chia-Huey Ooi; Fabian Birzele; Anton Belousov; Magdalena Zajac; Carsten Horn; Clare LeFave; Simon P. Robinson
Background:To assess antivascular effects, and evaluate clinically translatable magnetic resonance imaging (MRI) biomarkers of tumour response in vivo, following treatment with vanucizumab, a bispecific human antibody against angiopoietin-2 (Ang-2) and vascular endothelial growth factor-A (VEGF-A).Methods:Colo205 colon cancer xenografts were imaged before and 5 days after treatment with a single 10 mg kg−1 dose of either vanucizumab, bevacizumab (anti-human VEGF-A), LC06 (anti-murine/human Ang-2) or omalizumab (anti-human IgE control). Volumetric response was assessed using T2-weighted MRI, and diffusion-weighted, dynamic contrast-enhanced (DCE) and susceptibility contrast MRI used to quantify tumour water diffusivity (apparent diffusion coefficient (ADC), × 106 mm2 s−1), vascular perfusion/permeability (Ktrans, min−1) and fractional blood volume (fBV, %) respectively. Pathological correlates were sought, and preliminary gene expression profiling performed.Results:Treatment with vanucizumab, bevacizumab or LC06 induced a significant (P<0.01) cytolentic response compared with control. There was no significant change in tumour ADC in any treatment group. Uptake of Gd-DTPA was restricted to the tumour periphery in all post-treatment groups. A significant reduction in tumour Ktrans (P<0.05) and fBV (P<0.01) was determined 5 days after treatment with vanucizumab only. This was associated with a significant (P<0.05) reduction in Hoechst 33342 uptake compared with control. Gene expression profiling identified 20 human genes exclusively regulated by vanucizumab, 6 of which are known to be involved in vasculogenesis and angiogenesis.Conclusions:Vanucizumab is a promising antitumour and antiangiogenic treatment, whose antivascular activity can be monitored using DCE and susceptibility contrast MRI. Differential gene expression in vanucizumab-treated tumours is regulated by the combined effect of Ang-2 and VEGF-A inhibition.
International Journal of Cancer | 2012
Jake S. Burrell; Simon Walker-Samuel; Lauren C.J. Baker; Jessica K.R. Boult; Yann Jamin; Anderson J. Ryan; John C. Waterton; Jane Halliday; Simon P. Robinson
The recently described combined carbogen USPIO (CUSPIO) magnetic resonance imaging (MRI) method uses spatial correlations in independent imaging biomarkers to assess specific components of tumor vascular structure and function. Our study aimed to evaluate CUSPIO biomarkers for the assessment of tumor response to antiangiogenic therapy. CUSPIO imaging was performed in subcutaneous rat C6 gliomas before and 2 days after treatment with the potent VEGF‐signaling inhibitor cediranib (n = 12), or vehicle (n = 12). Histological validation of Hoechst 33342 uptake (perfusion), smooth muscle actin staining (maturation), pimonidazole adduct formation (hypoxia) and necrosis were sought. Following treatment, there was a significant decrease in fractional blood volume (−43%, p < 0.01) and a significant increase in hemodynamic vascular functionality (treatment altered ΔR2*carbogen from 1.2 to −0.2 s−1, p < 0.05). CUSPIO imaging revealed an overall significant decrease in plasma perfusion (−27%, p < 0.05) following cediranib treatment, that was associated with selective effects on immature blood vessels. The CUSPIO responses were associated with a significant 15% reduction in Hoechst 33342 uptake (p < 0.05), but no significant difference in vascular maturation or necrosis. Additionally, treatment with cediranib resulted in a significant 40% increase in tumor hypoxia (p < 0.05). The CUSPIO imaging method provides novel and more specific biomarkers of tumor vessel maturity and vascular hemodynamics, and their response to VEGF‐signaling inhibition, compared to current MR imaging biomarkers utilized in the clinic. Such biomarkers may prove effective in longitudinally monitoring tumor vascular remodeling and/or evasive resistance in response to antiangiogenic therapy.
Clinical Cancer Research | 2017
Rafal Panek; Liam Welsh; Lauren C.J. Baker; Maria A. Schmidt; Kee H. Wong; Angela M. Riddell; Dow-Mu Koh; Alex Dunlop; Dualta McQuaid; James A. d'Arcy; Shreerang A. Bhide; Kevin J. Harrington; Christopher M. Nutting; Georgina Hopkinson; Cheryl Richardson; Carol Box; Suzanne A. Eccles; Martin O. Leach; Simon P. Robinson; Kate Newbold
Purpose: To evaluate intrinsic susceptibility (IS) MRI for the identification of cycling hypoxia, and the assessment of its extent and spatial distribution, in head and neck squamous cell carcinoma (HNSCC) xenografts and patients. Experimental Design: Quantitation of the transverse relaxation rate, R2*, which is sensitive to paramagnetic deoxyhemoglobin, using serial IS-MRI acquisitions, was used to monitor temporal oscillations in levels of paramagnetic deoxyhemoglobin in human CALR xenografts and patients with HNSCC at 3T. Autocovariance and power spectrum analysis of variations in R2* was performed for each imaged voxel, to assess statistical significance and frequencies of cycling changes in tumor blood oxygenation. Pathologic correlates with tumor perfusion (Hoechst 33342), hypoxia (pimonidazole), and vascular density (CD31) were sought in the xenografts, and dynamic contrast-enhanced (DCE) MRI was used to assess patient tumor vascularization. The prevalence of fluctuations within patient tumors, DCE parameters, and treatment outcome were reported. Results: Spontaneous R2* fluctuations with a median periodicity of 15 minutes were detected in both xenografts and patient tumors. Spatially, these fluctuations were predominantly associated with regions of heterogeneous perfusion and hypoxia in the CALR xenografts. In patients, R2* fluctuations spatially correlated with regions of lymph nodes with low Ktrans values, typically in the vicinity of necrotic cores. Conclusions: IS-MRI can be used to monitor variations in levels of paramagnetic deoxyhemoglobin, associated with cycling hypoxia. The presence of such fluctuations may be linked with impaired tumor vasculature, the presence of which may impact treatment outcome. Clin Cancer Res; 23(15); 4233–41. ©2017 AACR.
Frontiers in Oncology | 2018
Lauren C.J. Baker; Arti Sikka; Jonathan M. Price; Jessica K.R. Boult; Elise Y. Lepicard; Gary Box; Yann Jamin; Terry J. Spinks; Gabriela Kramer-Marek; Martin O. Leach; Suzanne A. Eccles; Carol Box; Simon P. Robinson
Background: Overexpression of EGFR is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Patients with HNSCC who respond to EGFR-targeted tyrosine kinase inhibitors (TKIs) eventually develop acquired resistance. Strategies to identify HNSCC patients likely to benefit from EGFR-targeted therapies, together with biomarkers of treatment response, would have clinical value. Methods: Functional MRI and 18F-FDG PET were used to visualize and quantify imaging biomarkers associated with drug response within size-matched EGFR TKI-resistant CAL 27 (CALR) and sensitive (CALS) HNSCC xenografts in vivo, and pathological correlates sought. Results: Intrinsic susceptibility, oxygen-enhanced and dynamic contrast-enhanced MRI revealed significantly slower baseline R2∗, lower hyperoxia-induced ΔR2∗ and volume transfer constant Ktrans in the CALR tumors which were associated with significantly lower Hoechst 33342 uptake and greater pimonidazole-adduct formation. There was no difference in oxygen-induced ΔR1 or water diffusivity between the CALR and CALS xenografts. PET revealed significantly higher relative uptake of 18F-FDG in the CALR cohort, which was associated with significantly greater Glut-1 expression. Conclusions: CALR xenografts established from HNSCC cells resistant to EGFR TKIs are more hypoxic, poorly perfused and glycolytic than sensitive CALS tumors. MRI combined with PET can be used to non-invasively assess HNSCC response/resistance to EGFR inhibition.