Lauren H. Jepson
Salk Institute for Biological Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauren H. Jepson.
Nature | 2010
Greg D. Field; Jeffrey L. Gauthier; Alexander Sher; Martin Greschner; Timothy A. Machado; Lauren H. Jepson; Jonathon Shlens; Deborah E. Gunning; Keith Mathieson; W. Dabrowski; Liam Paninski; Alan Litke; E. J. Chichilnisky
To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol and small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long- and middle-wavelength-sensitive cones. However, only OFF midget cells frequently received strong input from short-wavelength-sensitive cones. ON and OFF midget cells showed a small non-random tendency to selectively sample from either long- or middle-wavelength-sensitive cones to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.
Journal of Neurophysiology | 2009
Chris Sekirnjak; Clare Hulse; Lauren H. Jepson; Pawel Hottowy; Alexander Sher; W. Dabrowski; A. M. Litke; E. J. Chichilnisky
Retinal implants are intended to help patients with degenerative conditions by electrically stimulating surviving cells to produce artificial vision. However, little is known about how individual retinal ganglion cells respond to direct electrical stimulation in degenerating retina. Here we used a transgenic rat model to characterize ganglion cell responses to light and electrical stimulation during photoreceptor degeneration. Retinas from pigmented P23H-1 rats were compared with wild-type retinas between ages P37 and P752. During degeneration, retinal thickness declined by 50%, largely as a consequence of photoreceptor loss. Spontaneous electrical activity in retinal ganglion cells initially increased two- to threefold, but returned to nearly normal levels around P600. A profound decrease in the number of light-responsive ganglion cells was observed during degeneration, culminating in retinas without detectable light responses by P550. Ganglion cells from transgenic and wild-type animals were targeted for focal electrical stimulation using multielectrode arrays with electrode diameters of approximately 10 microns. Ganglion cells were stimulated directly and the success rate of stimulation in both groups was 60-70% at all ages. Surprisingly, thresholds (approximately 0.05 mC/cm(2)) and latencies (approximately 0.25 ms) in P23H rat ganglion cells were comparable to those in wild-type ganglion cells at all ages and showed no change over time. Thus ganglion cells in P23H rats respond normally to direct electrical stimulation despite severe photoreceptor degeneration and complete loss of light responses. These findings suggest that high-resolution epiretinal prosthetic devices may be effective in treating vision loss resulting from photoreceptor degeneration.
The Journal of Neuroscience | 2012
Eizaburo Doi; Jeffrey L. Gauthier; Greg D. Field; Jonathon Shlens; Alexander Sher; Martin Greschner; Timothy A. Machado; Lauren H. Jepson; Keith Mathieson; Deborah E. Gunning; Alan Litke; Liam Paninski; E. J. Chichilnisky; Eero P. Simoncelli
Sensory neurons have been hypothesized to efficiently encode signals from the natural environment subject to resource constraints. The predictions of this efficient coding hypothesis regarding the spatial filtering properties of the visual system have been found consistent with human perception, but they have not been compared directly with neural responses. Here, we analyze the information that retinal ganglion cells transmit to the brain about the spatial information in natural images subject to three resource constraints: the number of retinal ganglion cells, their total response variances, and their total synaptic strengths. We derive a model that optimizes the transmitted information and compare it directly with measurements of complete functional connectivity between cone photoreceptors and the four major types of ganglion cells in the primate retina, obtained at single-cell resolution. We find that the ganglion cell population exhibited 80% efficiency in transmitting spatial information relative to the model. Both the retina and the model exhibited high redundancy (∼30%) among ganglion cells of the same cell type. A novel and unique prediction of efficient coding, the relationships between projection patterns of individual cones to all ganglion cells, was consistent with the observed projection patterns in the retina. These results indicate a high level of efficiency with near-optimal redundancy in visual signaling by the retina.
Journal of Neurophysiology | 2011
Chris Sekirnjak; Lauren H. Jepson; Pawel Hottowy; Alexander Sher; W. Dabrowski; Alan Litke; E. J. Chichilnisky
Retinitis pigmentosa (RP) is a leading cause of degenerative vision loss, yet its progressive effects on visual signals transmitted from the retina to the brain are not well understood. The transgenic P23H rat is a valuable model of human autosomal dominant RP, exhibiting extensive similarities to the human disease pathology, time course, and electrophysiology. In this study, we examined the physiological effects of degeneration in retinal ganglion cells (RGCs) of P23H rats aged between P37 and P752, and compared them with data from wild-type control animals. The strength and the size of visual receptive fields of RGCs decreased rapidly with age in P23H retinas. Light responses mediated by rod photoreceptors declined earlier (∼ P300) than cone-mediated light responses (∼ P600). Responses of ON and OFF RGCs diminished at a similar rate. However, OFF cells exhibited hyperactivity during degeneration, whereas ON cells showed a decrease in firing rate. The application of synaptic blockers abolished about half of the elevated firing in OFF RGCs, indicating that the remodeled circuitry was not the only source of degeneration-induced hyperactivity. These results advance our understanding of the functional changes associated with retinal degeneration.
The Journal of Physiology | 2011
Martin Greschner; Jonathon Shlens; Constantina Bakolitsa; Greg D. Field; Jeffrey L. Gauthier; Lauren H. Jepson; Alexander Sher; Alan Litke; E. J. Chichilnisky
This paper examines the correlated firing among multiple ganglion cell types in the retina. For many years it has been known that ganglion cells exhibit a tendency to fire simultaneously more or less frequently than would be predicted by chance. However, the particular patterns of correlated activity in the primate retina have been unclear. Here we reveal systematic, distance‐dependent correlations between different ganglion cell types. For the most part, the patterns of activity are consistent with a model in which noise in cone photoreceptors propagates through common retinal circuitry, creating correlations among ganglion cell signals.
The Journal of Neuroscience | 2014
Lauren H. Jepson; Pawel Hottowy; Keith Mathieson; Deborah E. Gunning; W. Dąbrowski; Alan Litke; E. J. Chichilnisky
Retinal prostheses electrically stimulate neurons to produce artificial vision in people blinded by photoreceptor degenerative diseases. The limited spatial resolution of current devices results in indiscriminate stimulation of interleaved cells of different types, precluding veridical reproduction of natural activity patterns in the retinal output. Here we investigate the use of spatial patterns of current injection to increase the spatial resolution of stimulation, using high-density multielectrode recording and stimulation of identified ganglion cells in isolated macaque retina. As previously shown, current passed through a single electrode typically induced a single retinal ganglion cell spike with submillisecond timing precision. Current passed simultaneously through pairs of neighboring electrodes modified the probability of activation relative to injection through a single electrode. This modification could be accurately summarized by a piecewise linear model of current summation, consistent with a simple biophysical model based on multiple sites of activation. The generalizability of the piecewise linear model was tested by using the measured responses to stimulation with two electrodes to predict responses to stimulation with three electrodes. Finally, the model provided an accurate prediction of which among a set of spatial stimulation patterns maximized selective activation of a cell while minimizing activation of a neighboring cell. The results demonstrate that tailored multielectrode stimulation patterns based on a piecewise linear model may be useful in increasing the spatial resolution of retinal prostheses.
The Journal of Neuroscience | 2013
Lauren H. Jepson; Pawel Hottowy; Keith Mathieson; Deborah E. Gunning; W. Dąbrowski; Alan Litke; E. J. Chichilnisky
Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal ganglion cell types was investigated by simultaneous stimulation and recording in isolated peripheral primate (Macaca sp.) retina using multi-electrode arrays. ON and OFF midget, ON and OFF parasol, and small bistratified ganglion cells could all be activated directly to fire a single spike with submillisecond latency using brief pulses of current within established safety limits. Thresholds for electrical stimulation were similar in all five cell types. In many cases, a single cell could be specifically activated without activating neighboring cells of the same type or other types. These findings support the feasibility of direct electrical stimulation of the major visual pathways at or near their native spatial and temporal resolution.
Neuron | 2014
Lauren H. Jepson; Pawel Hottowy; Geoffrey A. Weiner; W. Dabrowski; Alan Litke; E. J. Chichilnisky
Natural vision relies on spatiotemporal patterns of electrical activity in the retina. We investigated the feasibility of veridically reproducing such patterns with epiretinal prostheses. Multielectrode recordings and visual and electrical stimulation were performed on populations of identified ganglion cells in isolated peripheral primate retina. Electrical stimulation patterns were designed to reproduce recorded waves of activity elicited by a moving visual stimulus. Electrical responses in populations of ON parasol cells exhibited high spatial and temporal precision, matching or exceeding the precision of visual responses measured in the same cells. Computational readout of electrical and visual responses produced similar estimates of stimulus speed, confirming the fidelity of electrical stimulation for biologically relevant visual signals. These results suggest the possibility of producing rich spatiotemporal patterns of retinal activity with a prosthesis and that temporal multiplexing may aid in reproducing the neural code of the retina.
international ieee/embs conference on neural engineering | 2011
Lauren H. Jepson; Pawel Hottowy; D. E. Gunning; K. Mathieson; W. Dabrowski; A. M. Litke; E. J. Chichilnisky
Current retinal prostheses suffer from a lack of spatial specificity, resulting in indiscriminate stimulation of many distinct retinal ganglion cell (RGC) types over a large region. Re-creation of the complex spatiotemporal activity patterns of retinal ganglion cells requires single-cell spatial resolution, which is difficult to achieve with monopolar stimulation, even using high-density electrode arrays. Here we investigate the potential of spatial patterns of current injection for improving spatial specificity. We found that current injection through neighboring electrodes modulates RGC activation thresholds, and that this modulation can be described by a simple empirical model. Such a model could be used to determine optimal spatial patterns of current injection to activate a target RGC without also activating other nearby RGCs.
Archive | 2010
John M. Beggs; E. J. Chichilnisky; Wadysaw Dbrowski; Deborah E. Gunning; Jon Hobbs; Lauren H. Jepson; S. Kachiguine; Przemysaw Rydygier; Alexander Sher; Andrzej Skocze; Alan M. Litke