Lauren K. Ely
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauren K. Ely.
Journal of Experimental Medicine | 2003
Whitney A. Macdonald; Anthony W. Purcell; Nicole A. Mifsud; Lauren K. Ely; David S. Williams; Linus Chang; Jeffrey J. Gorman; Craig S. Clements; Lars Kjer-Nielsen; David M. Koelle; Scott R. Burrows; Brian D. Tait; Rhonda Holdsworth; Andrew G. Brooks; George O. Lovrecz; Louis Lu; Jamie Rossjohn; James McCluskey
HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a high frequency in all human populations, and yet they only differ by one residue on the α2 helix (B*4402 Asp156→B*4403 Leu156). CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphism at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B*4403 modifies both peptide repertoire and T cell recognition, and is reflected in the paradoxically powerful alloreactivity that occurs across this “minimal” mismatch. The findings suggest that these closely related class I genes are maintained in diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.
Nature Immunology | 2009
Lauren K. Ely; Suzanne Fischer; K. Christopher Garcia
Interleukin 17 (IL-17)-producing helper T cells (TH-17 cells), together with their effector cytokines, including members of the IL-17 family, are emerging as key mediators of chronic inflammatory and autoimmune disorders. Here we present the crystal structure of a complex of IL-17 receptor A (IL-17RA) bound to IL-17F in a 1:2 stoichiometry. The mechanism of complex formation was unique for cytokines and involved the engagement of IL-17 by two fibronectin-type domains of IL-17RA in a groove between the IL-17 homodimer interface. Binding of the first receptor to the IL-17 cytokines modulated the affinity and specificity of the second receptor-binding event, thereby promoting heterodimeric versus homodimeric complex formation. IL-17RA used a common recognition strategy to bind to several members of the IL-17 family, which allows it to potentially act as a shared receptor in multiple different signaling complexes.
Journal of Experimental Medicine | 2004
Danielle Zernich; Anthony W. Purcell; Whitney A. Macdonald; Lars Kjer-Nielsen; Lauren K. Ely; Nihay Laham; Tanya Crockford; Nicole A. Mifsud; Mandvi Bharadwaj; Linus Chang; Brian D. Tait; Rhonda Holdsworth; Andrew G. Brooks; Stephen P. Bottomley; Travis Beddoe; Chen Au Peh; Jamie Rossjohn; James McCluskey
HLA class I polymorphism creates diversity in epitope specificity and T cell repertoire. We show that HLA polymorphism also controls the choice of Ag presentation pathway. A single amino acid polymorphism that distinguishes HLA-B*4402 (Asp116) from B*4405 (Tyr116) permits B*4405 to constitutively acquire peptides without any detectable incorporation into the transporter associated with Ag presentation (TAP)-associated peptide loading complex even under conditions of extreme peptide starvation. This mode of peptide capture is less susceptible to viral interference than the conventional loading pathway used by HLA-B*4402 that involves assembly of class I molecules within the peptide loading complex. Thus, B*4402 and B*4405 are at opposite extremes of a natural spectrum in HLA class I dependence on the PLC for Ag presentation. These findings unveil a new layer of MHC polymorphism that affects the generic pathway of Ag loading, revealing an unsuspected evolutionary trade-off in selection for optimal HLA class I loading versus effective pathogen evasion.
Journal of Experimental Medicine | 2009
Julia K. Archbold; Whitney A. Macdonald; Stephanie Gras; Lauren K. Ely; John J. Miles; Melissa J. Bell; Rebekah M. Brennan; Travis Beddoe; Matthew C. J. Wilce; Craig S. Clements; Anthony W. Purcell; James McCluskey; Scott R. Burrows; Jamie Rossjohn
Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell–mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR–HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.
Immunity | 2009
Travis Beddoe; Zhenjun Chen; Craig S. Clements; Lauren K. Ely; Simon Robert Bushell; Julian P. Vivian; Lars Kjer-Nielsen; Siew Siew Pang; Michelle Anne Dunstone; Yu Chih Liu; Whitney A. Macdonald; Matthew A. Perugini; Matthew C. J. Wilce; Scott R. Burrows; Anthony W. Purcell; Tony Tiganis; Stephen P. Bottomley; James McCluskey; Jamie Rossjohn
Ligation of the alphabeta T cell receptor (TCR) by a specific peptide-loaded major histocompatibility complex (pMHC) molecule initiates T cell signaling via the CD3 complex. However, the initial events that link antigen recognition to T cell signal transduction remain unclear. Here we show, via fluorescence-based experiments and structural analyses, that MHC-restricted antigen recognition by the alphabeta TCR results in a specific conformational change confined to the A-B loop within the alpha chain of the constant domain (Calpha). The apparent affinity constant of this A-B loop movement mirrored that of alphabeta TCR-pMHC ligation and was observed in two alphabeta TCRs with distinct pMHC specificities. The Ag-induced A-B loop conformational change could be inhibited by fixing the juxtapositioning of the constant domains and was shown to be reversible upon pMHC disassociation. Notably, the loop movement within the Calpha domain, although specific for an agonist pMHC ligand, was not observed with a pMHC antagonist. Moreover, mutagenesis of residues within the A-B loop impaired T cell signaling in an in vitro system of antigen-specific TCR stimulation. Collectively, our findings provide a basis for the earliest molecular events that underlie Ag-induced T cell triggering.
Journal of Molecular Biology | 2008
Hilary Linda Hoare; Lucy C. Sullivan; Craig S. Clements; Lauren K. Ely; Travis Beddoe; Kate Henderson; Jie Lin; Hugh H. Reid; Andrew G. Brooks; Jamie Rossjohn
Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I molecule that binds peptides derived from the leader sequences of other HLA class I molecules. Natural killer cell recognition of these HLA-E molecules, via the CD94-NKG2 natural killer family, represents a central innate mechanism for monitoring major histocompatibility complex expression levels within a cell. The leader sequence-derived peptides bound to HLA-E exhibit very limited polymorphism, yet subtle differences affect the recognition of HLA-E by the CD94-NKG2 receptors. To better understand the basis for this peptide-specific recognition, we determined the structure of HLA-E in complex with two leader peptides, namely, HLA-Cw*07 (VMAPRALLL), which is poorly recognised by CD94-NKG2 receptors, and HLA-G*01 (VMAPRTLFL), a high-affinity ligand of CD94-NKG2 receptors. A comparison of these structures, both of which were determined to 2.5-A resolution, revealed that allotypic variations in the bound leader sequences do not result in conformational changes in the HLA-E heavy chain, although subtle changes in the conformation of the peptide within the binding groove of HLA-E were evident. Accordingly, our data indicate that the CD94-NKG2 receptors interact with HLA-E in a manner that maximises the ability of the receptors to discriminate between subtle changes in both the sequence and conformation of peptides bound to HLA-E.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Alexander Theodossis; Carole Guillonneau; Andrew David Welland; Lauren K. Ely; Craig S. Clements; Nicholas A. Williamson; Andrew I. Webb; Jacqueline A. Wilce; Roger J. Mulder; Michelle Anne Dunstone; Peter C. Doherty; James McCluskey; Anthony W. Purcell; Stephen J. Turner; Jamie Rossjohn
Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of “independent pegs” that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of αβ-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of “constrained” peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DPα–EEFGRAFSF) and an H2-Db restricted influenza peptide (DbPA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV → SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.
Journal of Immunology | 2011
Evan W. Newell; Lauren K. Ely; Andrew C. Kruse; Philip A. Reay; Stephanie N. Rodriguez; Aaron E. Lin; Michael S. Kuhns; K. Christopher Garcia; Mark M. Davis
T cells specific for the cytochrome c Ag are widely used to investigate many aspects of TCR specificity and interactions with peptide-MHC, but structural information has long been elusive. In this study, we present structures for the well-studied 2B4 TCR, as well as a naturally occurring variant of the 5c.c7 TCR, 226, which is cross-reactive with more than half of possible substitutions at all three TCR-sensitive residues on the peptide Ag. These structures alone and in complex with peptide-MHC ligands allow us to reassess many prior mutagenesis results. In addition, the structure of 226 bound to one peptide variant, p5E, shows major changes in the CDR3 contacts compared with wild-type, yet the TCR V-region contacts with MHC are conserved. These and other data illustrate the ability of TCRs to accommodate large variations in CDR3 structure and peptide contacts within the constraints of highly conserved TCR–MHC interactions.
Journal of Immunology | 2005
Lauren K. Ely; Katherine J. Green; Travis Beddoe; Craig S. Clements; John J. Miles; Stephen P. Bottomley; Danielle Zernich; Lars Kjer-Nielsen; Anthony W. Purcell; James McCluskey; Jamie Rossjohn; Scott R. Burrows
Alloreactive T lymphocytes are central mediators of graft-versus-host disease and allograft rejection. A public CTL clonotype with specificity for the alloantigens HLA-B*4402 and B*4405 is often expanded to large numbers in healthy HLA-B*0801+ individuals, driven by cross-reactive stimulation with the common, persistent herpesvirus EBV. Since such alloreactive memory CTL expansions have the potential to influence transplantation outcome, altered peptide ligands (APLs) of the target HLA-B*0801-binding EBV peptide, FLRGRAYGL, were screened as specific antagonists for this immunodominant clonotype. One APL, FLRGRFYGL, exerted powerful antagonism of a prototypic T cell clone expressing this immunodominant TCR when costimulated with target cells presenting HLA-B*0801FLRGRAYGL. Significantly, this APL also reduced the lysis of allogeneic target cells expressing HLA-B*4402 by up to 99%. The affinities of the agonist and antagonist complexes for the public TCR, measured using solution and solid-phase assays, were 8 and 138 μM, respectively. Surprisingly, the half-life of the agonist and antagonist complexes was similar, yet the association rate for the antagonist complex was significantly slower. These observations were further supported by structural studies that suggested a large conformational hurdle was required to ligate the immunodominant TCR to the HLA-B*0801 antagonist complex. By defining an antagonist APL against an immunodominant alloreactive TCR, these findings raise the prospect of exploiting such peptides to inhibit clinical alloreactivity, particularly against clonal T cell expansions that react with alloantigens.
Current Opinion in Immunology | 2008
Lauren K. Ely; Scott R. Burrows; Anthony W. Purcell; Jamie Rossjohn; James McCluskey
T-cells play a critical role in protective immunity, with their broad receptor repertoire capable of engaging diverse foreign pMHC landscapes. While the versatility and specificity of this MHC-restricted response is the hallmark of adaptive immunity, unwanted TCR interactions can profoundly effect the health of the host leading for instance to allograft rejection or autoimmunity. In allogeneic transplantation, such adverse reactions can occur by an indirect pathway when the TCR interacts with self-MHC molecules presenting allogeneic MHC derived peptides. Direct T-cell alloreactivity involves recognition of the allogeneic molecule itself either through molecular mimicry or by novel pMHC binding modes. By contrast, auto-reactive TCRs are considered to interact in a manner distinct from cognate pMHC interactions. Here we review recent advances in the field, focusing on structural data pertaining to alloreactivity and auto-reactivity and discuss implications for T-cell mediated transplant rejection and autoimmune disorders.