Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren M. Hallett is active.

Publication


Featured researches published by Lauren M. Hallett.


BioScience | 2011

Intervention Ecology: Applying Ecological Science in the Twenty-first Century

Richard J. Hobbs; Lauren M. Hallett; Paul R. Ehrlich; Harold A. Mooney

Rapid, extensive, and ongoing environmental change increasingly demands that humans intervene in ecosystems to maintain or restore ecosystem services and biodiversity. At the same time, the basic principles and tenets of restoration ecology and conservation biology are being debated and reshaped. Escalating global change is resulting in widespread no-analogue environments and novel ecosystems that render traditional goals unachievable. Policymakers and the general public, however, have embraced restoration without an understanding of its limitations, which has led to perverse policy outcomes. Therefore, a new ecology, free of pre- and misconceptions and directed toward meaningful interventions, is needed. Interventions include altering the biotic and abiotic structures and processes within ecosystems and changing social and policy settings. Interventions can be aimed at leverage points, both within ecosystems and in the broader social system—particularly, feedback loops that either maintain a particular state or precipitate a rapid change from one state to another.


Frontiers in Ecology and the Environment | 2014

Managing the whole landscape: historical, hybrid, and novel ecosystems

Richard J. Hobbs; Eric Higgs; Carol M. Hall; Peter Bridgewater; F. Stuart Chapin; Erle C. Ellis; John J. Ewel; Lauren M. Hallett; Jim Harris; Kristen B Hulvey; Stephen T. Jackson; Patricia L. Kennedy; Christoph Kueffer; Lori Lach; Trevor C. Lantz; Ariel E. Lugo; Joseph Mascaro; Stephen D. Murphy; Cara R. Nelson; Michael P. Perring; Timothy R. Seastedt; Rachel J. Standish; Katherine N. Suding; Pedro M. Tognetti; Laith Yakob; Laurie Yung

The reality confronting ecosystem managers today is one of heterogeneous, rapidly transforming landscapes, particularly in the areas more affected by urban and agricultural development. A landscape management framework that incorporates all systems, across the spectrum of degrees of alteration, provides a fuller set of options for how and when to intervene, uses limited resources more effectively, and increases the chances of achieving management goals. That many ecosystems have departed so substantially from their historical trajectory that they defy conventional restoration is not in dispute. Acknowledging novel ecosystems need not constitute a threat to existing policy and management approaches. Rather, the development of an integrated approach to management interventions can provide options that are in tune with the current reality of rapid ecosystem change.


Ecology | 2013

Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation

Elsa E. Cleland; Scott L. Collins; Timothy L. Dickson; Emily C. Farrer; Katherine L. Gross; Laureano A. Gherardi; Lauren M. Hallett; Richard J. Hobbs; Joanna S. Hsu; Laura Turnbull; Katharine N. Suding

Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences temporal variation in plant community structure. Here, we evaluated how species richness, turnover, and composition of grassland plant communities responded to interannual variation in precipitation by synthesizing long-term data from grasslands across the United States. We found that mean annual precipitation,(MAP) was a positive predictor of species richness across sites, but a positive temporal relationship between annual precipitation and richness was only evident within two sites with low MAP. We also found higher average rates of species turnover in dry sites that in turn had a high proportion of annual species, although interannual rates of species turnover were surprisingly high across all locations. Annual species were less abundant than perennial species at nearly all sites, and our analysis showed that the probability of a species being lost or gained from one year to the next increased with decreasing species abundance. Bray-Curtis dissimilarity from one year to the next, a measure of species composition change that is influenced mainly by abundant species, was insensitive to precipitation at all sites. These results suggest that the richness and turnover patterns we observed were driven primarily by rare species, which comprise the majority of the local species pools at these grassland sites. These findings are consistent with the idea that short-lived and less abundant species are more sensitive to interannual climate variability than longer-lived and more abundant species. We conclude that, among grassland ecosystems, xeric grasslands are likely to exhibit the greatest responsiveness of community composition (richness and turnover) to predicted future increases in interannual precipitation variability. Over the long-term, species composition may shift to reflect spatial patterns of mean precipitation; however, perennial-dominated systems will be buffered against rising interannual variation, while systems that have a large number of rare, annual species will show the greatest temporal variability in species composition in response to rising interannual variability in precipitation.


Ecology | 2014

Biotic mechanisms of community stability shift along a precipitation gradient

Lauren M. Hallett; Joanna S. Hsu; Elsa E. Cleland; Scott L. Collins; Timothy L. Dickson; Emily C. Farrer; Laureano A. Gherardi; Katherine L. Gross; Richard J. Hobbs; Laura Turnbull; Katharine N. Suding

Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dominant species populations can increase the stability of the overall community. While the importance of these mechanisms is debated, few studies have contrasted their importance in an environmental context. We analyzed nine long-term data sets of grassland species composition to investigate how two key environmental factors, precipitation amount and variability, may directly influence community stability and how they may indirectly influence stability via biotic mechanisms. We found that the importance of stability mechanisms varied along the environmental gradient: strong negative species covariance occurred in sites characterized by high precipitation variability, whereas portfolio effects increased in sites with high mean annual precipitation. Instead of questioning whether compensatory dynamics are important in nature, our findings suggest that debate should widen to include several stability mechanisms and how these mechanisms vary in importance across environmental gradients.


Methods in Ecology and Evolution | 2016

codyn: An r package of community dynamics metrics

Lauren M. Hallett; Sydney K. Jones; A. Andrew M. MacDonald; Matthew Jones; Dan F. B. Flynn; Julie Ripplinger; Peter Slaughter; Corinna Gries; Scott L. Collins

Summary New analytical tools applied to long-term data demonstrate that ecological communities are highly dynamic over time. We developed an r package, library(“codyn”), to help ecologists easily implement these metrics and gain broader insights into ecological community dynamics. library(“codyn”) provides temporal diversity indices and community stability metrics. All functions are designed to be easily implemented over multiple replicates. Temporal diversity indices include species turnover, mean rank shifts and rate of community change over time. Community stability metrics calculate overall stability and patterns of species covariance and synchrony over time, and include a null-modelling method to test significance. Finally, library(“codyn”) contains vignettes that describe methods and reproduce figures from published papers to help users contextualize and apply functions to their own data.


PLOS ONE | 2014

Evaluating Ecosystem Services Provided by Non-Native Species: An Experimental Test in California Grasslands

Claudia Stein; Lauren M. Hallett; W. Stanley Harpole; Katharine N. Suding

The concept of ecosystem services – the benefits that nature provides to humans society – has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700s. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.


Oecologia | 2017

Functional diversity increases ecological stability in a grazed grassland

Lauren M. Hallett; Claudia Stein; Katharine N. Suding

Understanding the factors governing ecological stability in variable environments is a central focus of ecology. Functional diversity can stabilize ecosystem function over time if one group of species compensates for an environmentally driven decline in another. Although intuitively appealing, evidence for this pattern is mixed. We hypothesized that diverse functional responses to rainfall will increase the stability of vegetation cover and biomass across rainfall conditions, but that this effect depends on land-use legacies that maintain functional diversity. We experimentally manipulated grazing in a California grassland to create land-use legacies of low and moderate grazing, across which we implemented rainout shelters and irrigation to create dry and wet conditions over 3 years. We found that the stability of the vegetation cover was greatly elevated and the stability of the biomass was slightly elevated across rainfall conditions in areas with histories of moderate grazing. Initial functional diversity—both in the seed bank and aboveground—was also greater in areas that had been moderately grazed. Rainfall conditions in conjunction with this grazing legacy led to different functional diversity patterns over time. Wet conditions led to rapid declines in functional diversity and a convergence on resource-acquisitive traits. In contrast, consecutively dry conditions maintained but did not increase functional diversity over time. As a result, grazing practices and environmental conditions that decrease functional diversity may be associated with lasting effects on the response of ecosystem functions to drought. Our results demonstrate that theorized relationships between diversity and stability are applicable and important in the context of working grazed landscapes.


Ecology Letters | 2017

Asynchrony among local communities stabilises ecosystem function of metacommunities

Kevin R. Wilcox; Andrew T. Tredennick; Sally E. Koerner; Emily Grman; Lauren M. Hallett; Meghan L. Avolio; Kimberly J. La Pierre; Gregory R. Houseman; Forest Isbell; David Samuel Johnson; Juha M. Alatalo; Andrew H. Baldwin; Edward W. Bork; Elizabeth H. Boughton; William D. Bowman; Andrea J. Britton; James F. Cahill; Scott L. Collins; Guozhen Du; Anu Eskelinen; Laura Gough; Anke Jentsch; Christel Kern; Kari Klanderud; Alan K. Knapp; Juergen Kreyling; Yiqi Luo; Jennie R. McLaren; Patrick Megonigal; V. G. Onipchenko

Abstract Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species‐level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1–315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species’ populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.


Ecology | 2018

Temporal heterogeneity increases with spatial heterogeneity in ecological communities

Scott L. Collins; Meghan L. Avolio; Corinna Gries; Lauren M. Hallett; Sally E. Koerner; Kimberly J. La Pierre; Andrew L. Rypel; Eric R. Sokol; Samuel B. Fey; Dan F. B. Flynn; Sydney K. Jones; Laura M. Ladwig; Julie Ripplinger; Matthew Jones

Heterogeneity is increasingly recognized as a foundational characteristic of ecological systems. Under global change, understanding temporal community heterogeneity is necessary for predicting the stability of ecosystem functions and services. Indeed, spatial heterogeneity is commonly used in alternative stable state theory as a predictor of temporal heterogeneity and therefore an early indicator of regime shifts. To evaluate whether spatial heterogeneity in species composition is predictive of temporal heterogeneity in ecological communities, we analyzed 68 community data sets spanning freshwater and terrestrial systems where measures of species abundance were replicated over space and time. Of the 68 data sets, 55 (81%) had a weak to strongly positive relationship between spatial and temporal heterogeneity, while in the remaining communities the relationship was weak to strongly negative (19%). Based on a mixed model analysis, we found a significant but weak overall positive relationship between spatial and temporal heterogeneity across all data sets combined, and within aquatic and terrestrial data sets separately. In addition, lifespan and successional stage were negatively and positively related to temporal heterogeneity, respectively. We conclude that spatial heterogeneity may be a predictor of temporal heterogeneity in ecological communities, and that this relationship may be a general property of many terrestrial and aquatic communities.


Journal of Applied Ecology | 2017

Where and how to restore in a changing world: a demographic-based assessment of resilience

Loralee Larios; Lauren M. Hallett; Katharine N. Suding

Summary Managers are increasingly looking to apply concepts of resilience to better anticipate and understand conservation and restoration in a changing environment. In this study, we explore how information on demography (recruitment, growth and survival) and competitive effects in different environments and with different starting species abundances can be used to better understand resilience. We use observational and experimental data to better understand dynamics between native Stipa pulchra and exotic Avena barbata and fatua, grasses characteristic of native and invaded grasslands in California, at three different levels of nitrogen (N) representative of a range of pollution via atmospheric deposition. A modelling framework that incorporates this information on demography and competition allows us to forecast dynamics over time. Our results showed that resilience of native grasslands depends on N inputs, where natural recovery should be possible at low N levels whereas native persistence would be difficult at high N levels. Hysteresis was evident at moderate N levels, where the starting conditions mattered. Synthesis and applications. The resilience of both invaded and native grasslands is influenced by nitrogen inputs. Our modelling approach gives direction about how best to allocate limited management resources as baselines shift: where natural recovery is possible, where best to allocate active restoration efforts, and where native remnants may be most vulnerable.

Collaboration


Dive into the Lauren M. Hallett's collaboration.

Top Co-Authors

Avatar

Katharine N. Suding

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Richard J. Hobbs

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinna Gries

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Jones

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge