Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole E. Heller is active.

Publication


Featured researches published by Nicole E. Heller.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Community disassembly by an invasive species

Nathan J. Sanders; Nicholas J. Gotelli; Nicole E. Heller; Deborah M. Gordon

Invasive species pose serious threats to community structure and ecosystem function worldwide. The impacts of invasive species can be more pervasive than simple reduction of species numbers. By using 7 years of data in a biological preserve in northern California, we documented the disassembly of native ant communities during an invasion by the Argentine ant. In sites without the Argentine ant, native ant communities exhibit significant species segregation, consistent with competitive dynamics. In sites with the Argentine ant, native ant communities appear random or weakly aggregated in species co-occurrence. Comparisons of the same sites before and after invasion indicate that the shift from a structured to a random community is rapid and occurs within a year of invasion. Our results show that invasive species not only reduce biodiversity but rapidly disassemble communities and, as a result, alter community organization among the species that persist.


Ecological Entomology | 2006

Seasonal spatial dynamics and causes of nest movement in colonies of the invasive Argentine ant (Linepithema humile)

Nicole E. Heller; Deborah M. Gordon

Abstract 1. Colony organisation and movement behaviour of the Argentine ant (Linepithema humile) was studied over 3 years in field populations in California and in captive colonies in the laboratory. This invasive species is highly polydomous and unicolonial; colonies consist of expansive and fluid networks of nests and trails. The spatial and temporal organisation of colonies may contribute to ecological dominance.


Insectes Sociaux | 2008

Nest connectivity and colony structure in unicolonial Argentine ants

Nicole E. Heller; Krista K. Ingram; Deborah M. Gordon

Abstract.Unicolonial ant colonies occupy many nests and individuals rarely show aggression across large geographic distances. These traits make it difficult to detect colony structure. Here we identify colony structure at scales of hundreds of square-meters, within an invasive population of unicolonial Argentine ants. In experiments using labeled food, and in a 3-year census of nests and trails, we found that food was shared and nests were linked by trails at distances up to 50 meters. Food was not distributed to all nearby Argentine ant nests, showing that ants tend to share resources within a spatially bounded group of nests. The spatial extent of food sharing increased from winter to summer. Across different habitats and nest densities, nests were consistently aggregated at spatial scales of 3- 4 meters in radius. This suggests that new nests bud from old nests at short distances regardless of local conditions. We suggest that a ‘colony’ of Argentine ants could be defined as a group of nests among which ants travel and share food. In our study population, colonies occupy up to 650 m2 and contain as many as 5 million ants. In combination with previous work showing that there is genetic differentiation among nests at similar spatial scales, the results suggest that Argentine ant populations do not function ecologically as single, large supercolonies, but instead as mosaics of smaller, distinct colonies consisting of groups of interacting nests.


Insectes Sociaux | 2004

Colony structure in introduced and native populations of the invasive Argentine ant, Linepithema humile

Nicole E. Heller

Summary.The Argentine ant, Linepithema humile, severely decreases the abundance and diversity of native ant fauna in areas where it invades, but coexists with a more diverse assemblage of ants in its native range. The greater ecological dominance of L. humile in the introduced range may be associated with differences in colony structure and population density in the introduced range relative to the native range. In this study, I compared aspects of L. humile’s colony structure, including density, the spatial pattern of nests and trails, and patterns of intraspecific aggression in parts of the introduced and native ranges. I also compared the number of ant species coexisting with L. humile. Introduced and native populations did not differ significantly in nest density, ant density, nest size, and nearest-neighbor distances. In three of the four study populations in the native range and all of the study populations in the introduced range, colonies were organized into supercolonies: they consisted of multiple, interconnected nests that were dense and spatially clumped, and aggression among conspecifics was rare. In one population in the native range, colonies were organized differently: they occupied single nest sites, nests were sparse and randomly dispersed, and ants from neighboring nests were aggressive toward each other. Species richness was significantly higher in the native range than in the introduced range, even in areas where L. humile formed dense supercolonies. The results suggest that differences in species coexistence between ranges may due to factors other than L. humile’s colony structure. One likely factor is the superior competitive ability of other ant species in the native range.


Conservation Biology | 2014

Development of a natural practice to adapt conservation goals to global change.

Nicole E. Heller; Richard J. Hobbs

Conservation goals at the start of the 21st century reflect a combination of contrasting ideas. Ideal nature is something that is historically intact but also futuristically flexible. Ideal nature is independent from humans, but also, because of the pervasiveness of human impacts, only able to reach expression through human management. These tensions emerge in current management rationales because scientists and managers are struggling to accommodate old and new scientific and cultural thinking, while also maintaining legal mandates from the past and commitments to preservation of individual species in particular places under the stresses of global change. Common management goals (such as integrity, wilderness, resilience), whether they are forward looking and focused on sustainability and change, or backward looking and focused on the persistence and restoration of historic states, tend to create essentialisms about how ecosystems should be. These essentialisms limit the options of managers to accommodate the dynamic, and often novel, response of ecosystems to global change. Essentialisms emerge because there is a tight conceptual coupling of place and historical species composition as an indicator of naturalness (e.g., normal, healthy, independent from humans). Given that change is increasingly the norm and ecosystems evolve in response, the focus on idealized ecosystem states is increasingly unwise and unattainable. To provide more open-ended goals, we propose greater attention be paid to the characteristics of management intervention. We suggest that the way we interact with other species in management and the extent to which those interactions reflect the interactions among other biotic organisms, and also reflect our conservation virtues (e.g., humility, respect), influences our ability to cultivate naturalness on the landscape. We call this goal a natural practice (NP) and propose it as a framework for prioritizing and formulating how, when, and where to intervene in this period of rapid change.


Ecosphere | 2015

Targeting climate diversity in conservation planning to build resilience to climate change

Nicole E. Heller; Jason Kreitler; David D. Ackerly; Stuart B. Weiss; Amanda Recinos; Ryan Branciforte; Lorraine E. Flint; Alan L. Flint; Elisabeth Micheli

Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial p...


Conservation Biology | 2018

Making habitat connectivity a reality: Habitat Connectivity

Annika T. H. Keeley; Galli Basson; D. Richard Cameron; Nicole E. Heller; Patrick R. Huber; Carrie A. Schloss; James H. Thorne; Adina M. Merenlender

Although a plethora of habitat-connectivity plans exists, protecting and restoring connectivity through on-the-ground action has been slow. We identified challenges to and opportunities for connectivity conservation through a literature review of project implementation, a workshop with scientists and conservation practitioners, 3 case studies of connectivity projects, and interviews with conservation professionals. Connectivity challenges and solutions tended to be context specific, dependent on land-ownership patterns, socioeconomic factors, and the policy framework. Successful connectivity implementation tended to be associated with development and promotion of a common vision among diverse sets of stakeholders, including nontraditional conservation actors, such as water districts and recreation departments, and with communication with partners and the public. Other factors that lead to successful implementation included undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as nongovernmental conservation organizations, public agencies, and private landowners, is critical to effective strategy implementation. A clear regulatory framework, including unambiguous connectivity conservation mandates, would increase public resource allocation, and incentive programs are needed to promote private sector engagement. Connectivity conservation must move more rapidly from planning to implementation. We provide an evidence-based solution composed of key elements for successful on-the-ground connectivity implementation. We identified the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change.


Conservation Biology | 2007

When agendas collide : Human welfare and biological conservation

Kai M. A. Chan; Robert M. Pringle; Jai Ranganathan; Carol L. Boggs; Yvonne L. Chan; Paul R. Ehrlich; Peter K. Haff; Nicole E. Heller; Karim Al-Khafaji; Dena P. Macmynowski


Climatic Change | 2010

Bridging the gap: linking climate-impacts research with adaptation planning and management

Michael D. Mastrandrea; Nicole E. Heller; Terry L. Root; Stephen H. Schneider


Biological Conservation | 2013

Finding a middle-ground: The native/non-native debate

Nancy Shackelford; Richard J. Hobbs; Nicole E. Heller; Lauren M. Hallett; Timothy R. Seastedt

Collaboration


Dive into the Nicole E. Heller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Hobbs

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge