Lauren M. Pintor
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauren M. Pintor.
Ecology | 2009
Lauren M. Pintor; Andrew Sih; Jacob L. Kerby
The fact that superabundant invasive pests are also sometimes highly aggressive represents an interesting paradox. Strong intraspecific aggression should result in high intraspecific competition and limit the densities reached by exotic species. One mechanism that can allow invaders to attain high densities despite high intraspecific aggression, involves positive correlations between aggression and other behaviors such as foraging activity. We conducted a mesocosm experiment to quantify the ecological implications of correlations between aggressiveness and foraging activity among groups of exotic signal crayfish (Pacifastacus leniusculus) at low and high densities. Our results showed that high invader densities increased intraspecific aggression and per capita interactions between crayfish, but also increased foraging activity and impacts on preferred prey. As a result, exotic crayfish did not show density-dependent reductions in per capita feeding or growth rates. We suggest that the positive correlation between aggression and activity is part of an aggression syndrome whereby some individuals are generally more aggressive/active than others across situations. An aggression syndrome can couple aggressive behaviors important to population establishment of invasive species with foraging activity that enhances the ability of invaders to attain high densities and have large impacts on invaded communities.
The American Naturalist | 2013
Katie E. McGhee; Lauren M. Pintor; Alison M. Bell
How predators and prey interact has important consequences for population dynamics and community stability. Here we explored how predator-prey interactions are simultaneously affected by reciprocal behavioral plasticity (i.e., plasticity in prey defenses countered by plasticity in predator offenses and vice versa) and consistent individual behavioral variation (i.e., behavioral types) within both predator and prey populations. We assessed the behavior of a predator species (northern pike) and a prey species (three-spined stickleback) during one-on-one encounters. We also measured additional behavioral and morphological traits in each species. Using structural equation modeling, we found that reciprocal behavioral plasticity as well as predator and prey behavioral types influenced how individuals behaved during an interaction. Thus, the progression and ultimate outcome of predator-prey interactions depend on both the dynamic behavioral feedback occurring during the encounter and the underlying behavioral type of each participant. We also examined whether predator behavioral type is underlain by differences in metabolism and organ size. We provide some of the first evidence that behavioral type is related to resting metabolic rate and size of a sensory organ (the eyes). Understanding the extent to which reciprocal behavioral plasticity and intraspecific behavioral variation influence the outcome of species interactions could provide insight into the maintenance of behavioral variation as well as community dynamics.
PLOS ONE | 2013
James E. Byers; William G. McDowell; Shelley R. Dodd; Rebecca S. Haynie; Lauren M. Pintor; Susan B. Wilde
Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species’ overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail’s extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5) are detrimental to the snail’s survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snail’s establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species.
The American Naturalist | 2011
Lauren M. Pintor; Joel S. Brown; Thomas L. Vincent
Although biological invasions pose serious threats to biodiversity, they also provide the opportunity to better understand interactions between the ecological and evolutionary processes structuring populations and communities. However, ecoevolutionary frameworks for studying species invasions are lacking. We propose using game theory and the concept of an evolutionarily stable strategy (ESS) as a conceptual framework for integrating the ecological and evolutionary dynamics of invasions. We suggest that the pathways by which a recipient community may have no ESS provide mechanistic hypotheses for how such communities may be vulnerable to invasion and how invaders can exploit these vulnerabilities. We distinguish among these pathways by formalizing the evolutionary contexts of the invader relative to the recipient community. We model both the ecological and the adaptive dynamics of the interacting species. We show how the ESS concept provides new mechanistic hypotheses for when invasions result in long- or short-term increases in biodiversity, species replacement, and subsequent evolutionary changes.
Behavioral Ecology and Sociobiology | 2014
Lauren M. Pintor; Katie E. McGhee; Daniel P. Roche; Alison M. Bell
There is increasing evidence that behavioral flexibility is associated with the ability to adaptively respond to environmental change. Flexibility can be advantageous in some contexts such as exploiting novel resources, but it may come at a cost of accuracy or performance in ecologically relevant tasks, such as foraging. Such trade-offs may, in part, explain why individuals within a species are not equally flexible. Here, we conducted a reversal learning task and predation experiment on a top fish predator, the Northern pike (Esox lucius), to examine individual variation in flexibility and test the hypothesis that an individual’s behavioral flexibility is negatively related with its foraging performance. Pikes were trained to receive a food reward from either a red or blue cup and then the color of the rewarded cup was reversed. We found that pike improved over time in how quickly they oriented to the rewarded cup, but there was a bias toward the color red. Moreover, there was substantial variation among individuals in their ability to overcome this red bias and switch from an unrewarded red cup to the rewarded blue cup, which we interpret as consistent variation among individuals in behavioral flexibility. Furthermore, individual differences in behavioral flexibility were negatively associated with foraging performance on ecologically relevant stickleback prey. Our data indicate that individuals cannot be both behaviorally flexible and efficient predators, suggesting a trade-off between these two traits.
Current Zoology | 2018
Richard C Oldham; Lauren M. Pintor; Suzanne M. Gray
Abstract Animals are increasingly faced with human-induced stressors that vary in space and time, thus we can expect population-level divergence in behaviors that help animals to cope with environmental change. However, empirical evidence of behavioral trait divergence across environmental extremes is lacking. We tested for variation in behavioral traits among 2 populations of an African cichlid fish (Pseudocrenilabrus multicolor victoriae Seegers, 1990) that experience extremes of dissolved oxygen (DO) and turbidity and are known to vary in a number of physiological and life history traits associated with these stressors. Using a common garden rearing experiment, F1 progeny from wild-caught parents originating from a swamp (low DO, clear) and a river (high DO, turbid) were reared in high DO, clear water. Predator simulation assays were conducted to test for (1) variation in boldness, general activity, and foraging activity between populations, (2) differences in correlations between behaviors within and across populations, and (3) repeatability of behaviors. There was strong evidence for divergence between populations, with swamp fish being more bold (i.e., leaving refuge sooner after a simulated predator attack) and active (i.e., spent more time out of refuge) than river fish. Across populations there were positive correlations between foraging activity and both boldness and general activity; however, within populations, there was only a strong positive relationship between foraging activity and boldness in the river population. Here, we have demonstrated that populations that originate from drastically different environments can produce progeny that exhibit measurable differences in behaviors and their correlated relationships even when reared under common conditions.
Biological Invasions | 2018
M. G. Glon; L. S. Reisinger; Lauren M. Pintor
Biogeographical comparisons of native and non-native populations allow researchers to understand the degree to which traits contributing to invasion success are intrinsic or change during the invasion process. Here, we investigate whether traits underlying interspecific competition change following invasion and whether these alter the impacts of two crayfish congeners that have invaded into each other’s native ranges. Specifically, we compared native and non-native populations of rusty (Faxonius rusticus) and virile crayfish (F. virilis). We compared native and non-native populations of each species using laboratory assays to examine aggression and large mesocosms with the congeners in sympatry to examine growth and survival as well as impacts on lower trophic levels. We found that non-native virile crayfish were more aggressive in response to a threat than native virile crayfish and exhibited greater growth and survival in sympatry with rusty crayfish. These intraspecific differences were large enough to alter coexistence between species in the mesocosm experiment, which is consistent with patterns of coexistence between these species in the field. We did not observe differences in traits between native and non-native rusty crayfish, but rusty crayfish were consistently competitively dominant over virile crayfish in paired laboratory assays. Non-native populations of both species had greater impacts on lower trophic levels than native populations. Taken together, these findings provide new evidence that trait changes during invasions may enhance ecological impacts of invasive animals and their ability to compete with closely related native species.
Oikos | 2010
Andrew Sih; Daniel I. Bolnick; Barney Luttbeg; John L. Orrock; Scott D. Peacor; Lauren M. Pintor; Evan L. Preisser; Jennifer S. Rehage; James R. Vonesh
Oikos | 2008
Lauren M. Pintor; Andrew Sih; Marissa L. Bauer
Ecology Letters | 2015
Lauren M. Pintor; James E. Byers