Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Briant is active.

Publication


Featured researches published by Laurence Briant.


Journal of Virology | 2015

Biology of Zika Virus Infection in Human Skin Cells

Rodolphe Hamel; Ophélie Dejarnac; Sineewanlaya Wichit; Peeraya Ekchariyawat; Aymeric Neyret; Natthanej Luplertlop; Manuel Perera-Lecoin; Pornapat Surasombatpattana; Loïc Talignani; Frédéric Thomas; Van-Mai Cao-Lormeau; Valérie Choumet; Laurence Briant; Philippe Desprès; Ali Amara; Hans Yssel; Dorothée Missé

ABSTRACT Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.


Virology | 2009

Replication cycle of chikungunya: A re-emerging arbovirus

Maxime Solignat; Stephen Higgs; Laurence Briant; Christian Devaux

Arboviruses (or arthropod-borne viruses), represent a threat for the new century. The 2005-2006 year unprecedented epidemics of chikungunya virus (CHIKV) in the French Reunion Island in the Indian Ocean, followed by several outbreaks in other parts of the world such as India, have attracted the attention of clinicians, scientists, and state authorities about the risks linked to this re-emerging mosquito-borne virus. CHIKV, which belongs to the Alphaviruses genus, was not previously regarded as a highly pathogenic arbovirus. However, this opinion was challenged by the death of several CHIKV-infected persons in Reunion Island. The epidemic episode began in December 2005 and four months later the seroprevalence survey report indicated that 236,000 persons, more than 30% of Reunion Island population, had been infected with CHIKV, among which 0.4-0.5% of cases were fatal. Since the epidemic peak, the infection case number has continued to increase to almost 40% of the population, with a total of more than 250 fatalities. Although information available on CHIKV is growing quite rapidly, we are still far from understanding the strategies required for the ecologic success of this virus, virus replication, its interactions with its vertebrate hosts and arthropod vectors, and its genetic evolution. In this paper, we summarize the current knowledge of CHIKV genomic organization, cell tropism, and the virus replication cycle, and evaluate the possibility to predict its future evolution. Such understanding may be applied in order to anticipate future epidemics and reduce the incidence by development and application of, for example, vaccination and antiviral therapy.


Journal of Cell Science | 2004

Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding

Vincent Blot; Fabien Perugi; Marie-Christine Prévost; Laurence Briant; Frédéric Tangy; Hugues Abriel; Olivier Staub; Marie-Christine Dokhélar; Claudine Pique

One of the most exciting recent developments in the field of retroviruses is the finding that their Gag proteins hijack cellular proteins from the mutivesicular body (MVB) pathway during the budding process. The Gag proteins of oncoretroviruses possess a PPxY motif that recruits a ubiquitin ligase from the Nedd4 family, whereas those of the human immunodeficiency virus interact through a PTAP motif with Tsg101, a protein of the ESCRT-1 complex. It is currently assumed that Nedd4 and Tsg101 represent equivalent entry gates towards the same cellular process leading to budding, and that both partners are recruited to the plasma membrane where viral budding occurs. However, we report here that the budding of the human oncoretrovirus HTLV-1, the Gag proteins of which possess tandem PPPY/PTAP motifs, requires both Nedd4 and Tsg101. We show that Nedd4.1, but not Nedd4.2, is recruited by the PPPY motif of Gag and subsequently catalyzes Gag ubiquitination. We also demonstrate that Gag interacts first with Nedd4.1 at the plasma membrane and then with Tsg101 in late endosomes/MVBs. Consistently, we found that HTLV-1 particles mutated in the PPPY motif remain underneath the plasma membrane, blocked at an early step of the budding process, whereas PTAP-mutated viruses accumulate in intracellular vesicles, blocked at a later step. Our findings indicate that Nedd4.1 and Tsg101 act successively in the assembly process of HTLV-1 to ensure proper Gag trafficking through the endocytic pathway up to late endosomes where the late steps of retroviral release occur.


Trends in Microbiology | 2008

The Chikungunya threat: an ecological and evolutionary perspective

Christine Chevillon; Laurence Briant; François Renaud; Christian Devaux

Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus. Although primarily African and zoonotic, it is known chiefly for its non-African large urban outbreaks during which it is transmitted by the same vectors as those of Dengue viruses. Unlike Dengue viruses, CHIKV displays a re-emergence pattern that closely depends on long-distance migrations including recent re-immigrations from African (putatively zoonotic) sources. Genus-based differences also emerged when comparing the evolution of Dengue-related (Flaviviruses) and of CHIKV-related (Alphaviruses) arboviruses. In this review, we discuss current information on CHIKV genetics, ecology and human infection. Further investigations on African CHIKV ecology and the differences between Flavivirus and Alphavirus members in adaptive changes and evolutionary constraints are likely to help delineate the potential of further CHIKV (re-)emergence.


PLOS Pathogens | 2011

Induction of a Peptide with Activity against a Broad Spectrum of Pathogens in the Aedes aegypti Salivary Gland, following Infection with Dengue Virus

Natthanej Luplertlop; Pornapat Surasombatpattana; Sirilaksana Patramool; Emilie Dumas; Ladawan Wasinpiyamongkol; Laure Saune; Rodolphe Hamel; Eric Bernard; Denis Sereno; Frédéric Thomas; David Piquemal; Hans Yssel; Laurence Briant; Dorothée Missé

The ultimate stage of the transmission of Dengue Virus (DENV) to man is strongly dependent on crosstalk between the virus and the immune system of its vector Aedes aegypti (Ae. aegypti). Infection of the mosquitos salivary glands by DENV is the final step prior to viral transmission. Therefore, in the present study, we have determined the modulatory effects of DENV infection on the immune response in this organ by carrying out a functional genomic analysis of uninfected salivary glands and salivary glands of female Ae. aegypti mosquitoes infected with DENV. We have shown that DENV infection of salivary glands strongly up-regulates the expression of genes that encode proteins involved in the vectors innate immune response, including the immune deficiency (IMD) and Toll signalling pathways, and that it induces the expression of the gene encoding a putative anti-bacterial, cecropin-like, peptide (AAEL000598). Both the chemically synthesized non-cleaved, signal peptide-containing gene product of AAEL000598, and the cleaved, mature form, were found to exert, in addition to antibacterial activity, anti-DENV and anti-Chikungunya viral activity. However, in contrast to the mature form, the immature cecropin peptide was far more effective against Chikungunya virus (CHIKV) and, furthermore, had strong anti-parasite activity as shown by its ability to kill Leishmania spp. Results from circular dichroism analysis showed that the immature form more readily adopts a helical conformation which would help it to cause membrane permeabilization, thus permitting its transfer across hydrophobic cell surfaces, which may explain the difference in the anti-pathogenic activity between the two forms. The present study underscores not only the importance of DENV-induced cecropin in the innate immune response of Ae. aegypti, but also emphasizes the broad-spectrum anti-pathogenic activity of the immature, signal peptide-containing form of this peptide.


The EMBO Journal | 2010

Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells.

Fabienne Rayne; Solène Debaisieux; Hocine Yezid; Yea Lih Lin; Clément Mettling; Karidia Konate; Nathalie Chazal; Stefan Arold; Martine Pugnière; Françoise Sanchez; Anne Bonhoure; Laurence Briant; Erwann Loret; Christian Roy; Bruno Beaumelle

Human immunodeficiency virus type 1 (HIV‐1) transcription relies on its transactivating Tat protein. Although devoid of a signal sequence, Tat is released by infected cells and secreted Tat can affect uninfected cells, thereby contributing to HIV‐1 pathogenesis. The mechanism and the efficiency of Tat export remained to be documented. Here, we show that, in HIV‐1‐infected primary CD4+ T‐cells that are the main targets of the virus, Tat accumulates at the plasma membrane because of its specific binding to phosphatidylinositol‐4,5‐bisphosphate (PI(4,5)P2). This interaction is driven by a specific motif of the Tat basic domain that recognizes a single PI(4,5)P2 molecule and is stabilized by membrane insertion of Tat tryptophan side chain. This original recognition mechanism enables binding to membrane‐embedded PI(4,5)P2 only, but with an unusually high affinity that allows Tat to perturb the PI(4,5)P2‐mediated recruitment of cellular proteins. Tat–PI(4,5)P2 interaction is strictly required for Tat secretion, a process that is very efficient, as ∼2/3 of Tat are exported by HIV‐1‐infected cells during their lifespan. The function of extracellular Tat in HIV‐1 infection might thus be more significant than earlier thought.


PLOS ONE | 2010

Endocytosis of Chikungunya Virus into Mammalian Cells: Role of Clathrin and Early Endosomal Compartments

Eric Bernard; Maxime Solignat; Nathalie Chazal; Stephen Higgs; Christian Devaux; Laurence Briant

Background The replicative cycle of chikungunya virus (CHIKV), an alphavirus that recently re-emerged in India and in Indian Ocean area, remains mostly unknown. The aim of the present study was to investigate the intracellular trafficking pathway(s) hijacked by CHIKV to enter mammalian cells. Methodology/Principal Findings Entry pathways were investigated using a variety of pharmacological inhibitors or overexpression of dominant negative forms of proteins perturbating cellular endocytosis. We found that CHIKV infection of HEK293T mammalian cells is independent of clathrin heavy chain and- dependent of functional Eps15, and requires integrity of Rab5-, but not Rab7-positive endosomal compartment. Cytoskeleton integrity is crucial as cytochalasin D and nocodazole significantly reduced infection of the cells. Finally, both methyl β-cyclodextrin and lysomotropic agents impaired CHIKV infection, supporting that a cholesterol-, pH-dependent step is required to achieve productive infection. Interestingly, differential sensitivity to lysomotropic agents was observed between the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in Reunion Island. Conclusions Together our data indicate that CHIKV entry in its target cells is essentially mediated by clathrin-independent, Eps15-dependent endocytosis. Despite that this property is shared by the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in La Réunion Island, differential sensitivity to lysomotropic agents may support that the LR-OPY1 strain has acquired specific entry mechanisms.


Virology Journal | 2011

Chikungunya triggers an autophagic process which promotes viral replication

Pascale Krejbich-Trotot; Ghislaine Li-Pat-Yuen; Jean-Jacques Hoarau; Laurence Briant; Philippe Gasque; Mélanie Denizot

BackgroundChikungunya Virus (ChikV) surprised by a massive re-emerging outbreak in Indian Ocean in 2006, reaching Europe in 2007 and exhibited exceptional severe physiopathology in infants and elderly patients. In this context, it is important to analyze the innate immune host responses triggered against ChikV. Autophagy has been shown to be an important component of the innate immune response and is involved in host defense elimination of different pathogens. However, the autophagic process was recently observed to be hijacked by virus for their own replication. Here we provide the first evidence that hallmarks of autophagy are specifically found in HEK.293 infected cells and are involved in ChikV replication.MethodsTo test the capacity of ChikV to mobilize the autophagic machinery, we performed fluorescence microscopy experiments on HEK.GFP.LC3 stable cells, and followed the LC3 distribution during the time course of ChikV infection. To confirm this, we performed electron microscopy on HEK.293 infected cells. To test the effect of ChikV-induced-autophagy on viral replication, we blocked the autophagic process, either by pharmacological (3-MA) or genetic inhibition (siRNA against the transcript of Beclin 1, an autophagic protein), and analyzed the percentage of infected cells and the viral RNA load released in the supernatant. Moreover, the effect of induction of autophagy by Rapamycin on viral replication was tested.ResultsThe increasing number of GFP-LC3 positive cells with a punctate staining together with the enhanced number of GFP-LC3 dots per cell showed that ChikV triggered an autophagic process in HEK.293 infected cells. Those results were confirmed by electron microscopy analysis since numerous membrane-bound vacuoles characteristic of autophagosomes were observed in infected cells. Moreover, we found that inhibition of autophagy, either by biochemical reagent and RNA interference, dramatically decreases ChikV replication.ConclusionsTaken together, our results suggest that autophagy may play a promoting role in ChikV replication. Investigating in details the relationship between autophagy and viral replication will greatly improve our knowledge of the pathogenesis of ChikV and provide insight for the design of candidate antiviral therapeutics.


Journal of Biological Chemistry | 1999

Synthetic Peptides Derived from the Variable Regions of an Anti-CD4 Monoclonal Antibody Bind to CD4 and Inhibit HIV-1 Promoter Activation in Virus-infected Cells

Céline Monnet; Daniel Laune; Jeanny Laroche-Traineau; Martine Biard-Piechaczyk; Laurence Briant; Cédric Bès; Martine Pugnière; Jean-Claude Mani; Bernard Pau; Martine Cerutti; Gérard Devauchelle; Christian Devaux; Claude Granier; Thierry Chardès

The monoclonal antibody (mAb) ST40, specific for the immunoglobulin complementarity-determining region (CDR) 3-like loop in domain 1 of the CD4 molecule, inhibits human immunodeficiency virus type 1 (HIV-1) promoter activity and viral transcription in HIV-infected cells. To design synthetic peptides from the ST40 paratope that could mimic these biological properties, a set of 220 overlapping 12-mer peptides frameshifted by one residue, corresponding to the deduced ST40 amino acid sequence, was synthesized by the Spot method and tested for binding to recombinant soluble CD4 antigen. Several peptides that included in their sequences amino acids from the CDRs of the antibody and framework residues flanking the CDRs were found to bind soluble CD4. Eleven paratope-derived peptides (termed CM1–CM11) were synthesized in a cyclic and soluble form. All the synthetic peptides showed CD4 binding capacity with affinities ranging from 1.6 to 86.4 nm. Moreover, peptides CM2, CM6, CM7, CM9, and CM11 were able to bind a cyclic peptide corresponding to the CDR3-like loop in domain 1 of CD4 (amino acids 81–92 of CD4). Peptide CM9 from the light chain variable region of mAb ST40 and, to a lesser extent, peptides CM2 and CM11 were able to inhibit HIV-1 promoter long terminal repeat-driven β-galactosidase gene expression in the HeLa P4 HIV-1 long terminal repeat β-galactosidase indicator cell line infected with HIV-1. The binding of mAb ST40 to CD4 was also efficiently displaced by peptides CM2, CM9, and CM11. Our results indicate that the information gained from a systematic exploration of the antigen binding capacity of synthetic peptides from immunoglobulin variable sequences can lead to the identification of bioactive paratope-derived peptides of potential pharmacological interest.


Infection, Genetics and Evolution | 2011

Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses

Pornapat Surasombatpattana; Rodolphe Hamel; Sirilaksana Patramool; Natthanej Luplertlop; Frédéric Thomas; Philippe Desprès; Laurence Briant; Hans Yssel; Dorothée Missé

Dengue virus (DENV) infection is the most prevalent mosquito-borne viral diseases in the world. Vector-mediated transmission of DENV is initiated when a blood-feeding female Aedes mosquito injects saliva, together with the virus, into the skin of its mammalian host. Understanding the role of skin immune cells in the activation of innate immunity to DENV at the early times of infection is a critical issue that remains to be investigated. The purpose of our study was to assess the contribution of human keratinocytes as potential host cells to DENV in the activation of immune responses at the anatomical site of mosquito bite. We show that primary keratinocytes support DENV replication with the production of negative-stranded viral RNAs inside the infected cells. In the course of DENV life cycle, we observed the activation of host genes involved in the antiviral immune responses such as intracellular RNA virus sensors Toll-Like Receptor-3, Retinoic Acid Inducible Gene-I, Melanoma Differentiation Associated gene-5 and the RNA-dependent protein kinase R. DENV infection of primary keratinocytes also resulted in up-regulation of the expression of the antiviral Ribonuclease L gene, which subsequently led to enhanced production of IFN-β and IFN-γ. Depending on stages of viral replication, we observed the activation of host genes encoding the antimicrobial proteins β-defensin and RNase 7 in infected keratinocytes. Our data demonstrate for the first time the permissiveness of human epidermal keratinocytes to DENV infection. Remarkably, DENV replication in keratinocytes contributes to the establishment of antiviral innate immunity that might occur in the early times after the bite of mosquito.

Collaboration


Dive into the Laurence Briant's collaboration.

Top Co-Authors

Avatar

Christian Devaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nathalie Chazal

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Eric Bernard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Dorothée Missé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rodolphe Hamel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Thomas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pornapat Surasombatpattana

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sonia Brun

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge