Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Charles is active.

Publication


Featured researches published by Laurence Charles.


Nature Communications | 2015

Design and synthesis of digitally encoded polymers that can be decoded and erased

Raj Kumar Roy; Anna Meszynska; Chloé Laure; Laurence Charles; Claire Verchin; Jean-François Lutz

Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.


Journal of the American Chemical Society | 2010

CO2 Binding by Dynamic Combinatorial Chemistry: An Environmental Selection

Julien Leclaire; Guillaume Husson; Nathalie Devaux; Vincent Delorme; Laurence Charles; Fabio Ziarelli; Perrine Desbois; Alexandra Chaumonnot; Marc Jacquin; Frédéric Fotiadu; Gérard Buono

We now report that a dynamic combinatorial selection approach can quantitatively provide, from trivial building blocks, an architecturally complex organic material, in which carbon dioxide is reversibly but covalently incorporated as a guest with a mass content of 20%. Solid-state analyses combined with covalent disconnection and quantization of the liberated components allowed identification of a three-component monomeric unit repeated within a range of assembled oligomeric adducts whose repartition and binding capacity can be finely tuned through the starting stoichiometries. The self-assembly of these architectures occurs through the simultaneous creation of more than 25 covalent bonds per molecular entity. It appears that the thermodynamic selection is directed by the packing efficiency of these adducts, explaining the spectacular building block discrimination between homologues differing by one carbon unit. This selectivity, combined with the reversible nature of the system, provided pure molecular building blocks after a simple chemical disconnection, promoting CO(2) as a green auxiliary to purify polyaldehyde or polyamine from mixtures of homologous structures. Moreover, the gas template could be expelled as a pure compound under thermodynamic control. This cooperative desorption process yielded back the initial libraries of high molecular diversity with a promising reduction of the energetic costs of capture and recycling.


Journal of the American Society for Mass Spectrometry | 2008

Microstructural study of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer (PEO-b-PS) by electrospray tandem mass spectrometry

Marion Girod; Trang N. T. Phan; Laurence Charles

Electrospray ionization tandem mass spectrometry has been used to characterize the microstructure of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer, called SG1-capped PEO-b-PS. The main dissociation route of co-oligomers adducted with lithium or silver cation was observed to proceed via the homolytic cleavage of a C-ON bond, aimed at undergoing reversible homolysis during nitroxide mediated polymerization. This cleavage results in the elimination of the terminal SG1 end-group as a radical, inducing a complete depolymerization process of the PS block from the so-formed radical cation. These successive eliminations of styrene molecules allowed a straightforward determination of the PS block size. An alternative fragmentation pathway of the radical cation was shown to provide structural information on the junction group between the two blocks. Proposed dissociation mechanisms were supported by accurate mass measurements. Structural information on the SG1 end-group could be reached from weak abundance fragment ions detected in the low m/z range of the MS/MS spectrum. Amongst fragments typically expected from PS dissociation, only β ions were produced. Moreover, specific dissociation of the PEO block was not observed to occur in MS/MS, suggesting that these rearrangement reactions do not compete effectively with dissociations of the odd-electron fragment ions. Information about the PEO block length and the initiated end-group were obtained in MS3 experiments.


Journal of Physical Chemistry A | 2008

Generation and dissociation pathways of singly and doubly protonated bisguanidines in the gas phase.

Aura Tintaru; Jana Roithová; Detlef Schröder; Laurence Charles; Iva Jušinski; Zoran Glasovac; Mirjana Eckert-Maksić

Para-bisguanidinyl benzene 1 and its N-permethylated derivative 2 are both sufficiently strong bases to afford not only the monocations [1+H]+ and [2+H]+, but also the doubly protonated ions, [1+2H]2+ and [2+2H]2+, in the gas phase. The title ions generated via electrospray ionization are probed by collision-induced dissociation experiments which inter alia reveal that the dicationic species [1+2H]2+ and [2+2H]2+ can even undergo fragmentation reactions with maintenance of the 2-fold charge. Complementary results from density functional theory predict PAs above 1000 kJ mol(-1) for the neutral compounds, i.e., PA(1) = 1025 kJ mol(-1) and PA(2) = 1067 kJ mol(-1). Due to the stabilization of the positive charge in the guanidinium ions and the para-phenylene spacer separating the basic sites, even the monocations bear sizable proton affinities, i.e., PA([1+H]+) = 740 kJ mol(-1) and PA([2+H]+) = 816 kJ mol(-1).


Rapid Communications in Mass Spectrometry | 2008

On-line coupling of liquid chromatography at critical conditions with electrospray ionization tandem mass spectrometry for the characterization of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer

Marion Girod; Trang N. T. Phan; Laurence Charles

Coupling of liquid chromatography at critical conditions (LCCC) with on-line mass spectrometry (MS) detection was implemented via an electrospray ionization (ESI) interface, using a mobile phase containing the cationizing agent. Critical conditions established for poly(ethylene oxide) were used to characterize a poly(ethylene oxide)/polystyrene block copolymer (PEO-b-PS) in both MS and MS/MS modes. As co-oligomer molecules were successfully separated according to the PS block size, structural information could be reached from simplified MS spectra. The microstructure of this copolymer, synthesized by nitroxide-mediated polymerization, could further be unambiguously characterized in LCCC/ESI-MS/MS experiments since the PS block size could be reached by both the co-oligomer chromatographic behavior and its MS/MS pattern.


Journal of the American Chemical Society | 2016

Orthogonal Synthesis of “Easy-to-Read” Information-Containing Polymers Using Phosphoramidite and Radical Coupling Steps

Gianni Cavallo; Abdelaziz Al Ouahabi; Laurence Oswald; Laurence Charles; Jean-François Lutz

A new orthogonal solid-phase iterative strategy is proposed for the synthesis of sequence-coded polymers. This approach relies on the use of two successive chemoselective steps: (i) phosphoramidite coupling, and (ii) radical-radical coupling. These repeated steps can be performed using two different types of building blocks, i.e. a phosphoramidite monomer that also contains an alkyl bromide and a hydroxy-functionalized nitroxide. The phosphoramidite and the hydroxy group are reacted in step (i), thus leading to a phosphite that is oxidized in situ into a phosphate bond. The alkyl bromide is activated by copper bromide in step (ii) to afford a carbon-centered radical that is spin-trapped in situ by the nitroxide. The iterative repetition of these steps allow synthesis of uniform polymers, as evidenced by high-resolution electrospray mass spectrometry. Moreover, binary information could be easily implemented in the polymers using different types of phosphoramidite monomers in step (i). Interestingly, it was found that the formed information-containing polymers are very easy to sequence by tandem mass spectrometry due to the presence of easily cleavable alkoxyamine bonds formed in step (ii).


Chemistry: A European Journal | 2015

Preparation of Information‐Containing Macromolecules by Ligation of Dyad‐Encoded Oligomers

Thanh Tam Trinh; Laurence Oswald; Delphine Chan-Seng; Laurence Charles; Jean-François Lutz

A simplified strategy for preparing non-natural information-containing polymers is reported. The concept relies on the successive ligation of oligomers that contain minimal sequence motifs. It was applied here to the synthesis of digitally-encoded poly(triazole amide)s, in which propyl and 2-methyl propyl motifs are used to code 0 and 1, respectively. A library of four oligo(triazole amide)s containing the information dyads 00, 01, 10, and 11 was prepared. These oligomers contain two reactive functions, that is, an alkyne and a carboxylic acid. Thus, they can be linked to another with the help of a reactive spacer containing azide and amine functions. Using two successive chemoselective steps, that is, azide-alkyne Huisgen cycloaddition and carboxylic acid-amine coupling, monodisperse polymers can be obtained. In particular, the library of dyads permits the implementation of any desired sequence using a small number of steps. As a proof-of-concept, the synthesis of molecular bytes 00000000 and 00000110 is described.


Journal of the American Society for Mass Spectrometry | 2011

Tandem Mass Spectrometry of Trimethylsilyl-Terminated Poly(Dimethylsiloxane) Ammonium Adducts Generated by Electrospray Ionization

Thierry Fouquet; Stéphane Humbel; Laurence Charles

Ammonium adducts of trimethylsilyl-terminated poly(dimethylsiloxane) (CH3-PDMS) produced by electrospray ionization were submitted to collision induced dissociation and revealed a particular MS/MS behavior: the same three main product ions at m/z 221, 295, and 369 were always generated in very similar relative abundances regardless of the size of the precursor ion. Combining accurate mass measurements and ab initio calculation allowed very stable cyclic geometries to be obtained for these ionic species. Dissociation mechanisms were proposed to account for the three targeted ions to be readily generated in a two-step or a three-step reaction from any CH3-PDMS ammonium adducts. A second set of three product ions was also observed with low abundance at m/z 207, 281, and 355, which were shown in MS3 experiments to be formed in secondary reactions. An alternative dissociation process was shown to consist of a concerted elimination of ammonia and methane and the need for a methyl of an end-group to be involved in the released methane molecule would account for this reaction to mainly proceed from the smallest precursor ions.


Polymer Chemistry | 2013

Heterogeneous modification of chitosan via nitroxide-mediated polymerization

Catherine Lefay; Yohann Guillaneuf; Guillaume Moreira; Joel J. Thevarajah; Patrice Castignolles; Fabio Ziarelli; Emily Bloch; Mohamed Major; Laurence Charles; Marianne Gaborieau; Denis Bertin; Didier Gigmes

Chitosan (CS) was modified by SG1-based nitroxide-mediated polymerization under heterogeneous conditions. After introduction of acrylamide and/or acrylate functions onto the CS backbone followed by intermolecular 1,2 radical addition of the BlocBuilder alkoxyamine (CS–BB), methyl methacrylate (MMA) in the presence of a small amount of acrylonitrile (AN) or sodium 4-styrenesulfonate (SS) was polymerized by nitroxide-mediated polymerization (NMP). ESR and free-solution capillary electrophoresis confirmed the synthesis of CS–BB. The successful synthesis of CS-g-P(MMA-co-AN) and CS-g-PSS grafted copolymers was proved by TGA and solid-state NMR spectroscopy with ca. 20 to 30 wt% of grafted synthetic polymer in the final product.


Chemistry: A European Journal | 2013

Temporary Intramolecular Generation of Pyridine Carbenes in Metal‐Free Three‐Component CH Bond Functionalisation/Aryl‐Transfer Reactions

Faisal Nawaz; Kishor Mohanan; Laurence Charles; Michel Rajzmann; Damien Bonne; Olivier Chuzel; Jean Rodriguez; Yoann Coquerel

Nucleophilic addition of pyridines to benzyne generates zwitterionic adducts that evolve by a rapid intramolecular proton shift to produce the corresponding pyridine carbenes, N-phenyl pyrid-2-ylidenes. In the presence of electrophilic ketones (isatin derivatives), the pyridylidenes can further react by an original bis-arylation reaction of the carbonyl compounds involving a formal pyridine C-H bond functionalisation. The overall transformation is an unprecedented three-component reaction featuring a carbene intermediate. The mechanism of this transformation was examined in detail by using both experimental and theoretical approaches. It was found that the generation of N-phenyl pyrid-2-ylidene from pyridine and benzyne is energetically favoured, and that the corresponding carbene dimer can also form easily. Under the three-component reaction conditions, the pyridylidene preferentially adds to the ketone group of the isatin derivative to produce a zwitterionic adduct amenable to an intramolecular aryl transfer reaction by a concerted nucleophilic aromatic substitution. This peculiar reactivity for a carbene was compared to possibly competitive known reactions of stable carbenes with carbonyl compounds, and the reaction was found to be under thermodynamic control. The reported method of generation of N-phenyl pyrid-2-ylidenes and their reactivity with carbonyl compounds unlock new perspectives in organic synthesis.

Collaboration


Dive into the Laurence Charles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Gigmes

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Stéphane Viel

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Ziarelli

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Salomé Poyer

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge