Laurence Decourty
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurence Decourty.
Yeast | 2000
Micheline Fromont-Racine; Andrew E. Mayes; Adeline Brunet-Simon; Jean-Christophe Rain; Alan Colley; Ian Dix; Laurence Decourty; Nicolas Joly; Florence Ricard; Jean D. Beggs; Pierre Legrain
A set of seven structurally related Sm proteins forms the core of the snRNP particles containing the spliceosomal U1, U2, U4 and U5 snRNAs. A search of the genomic sequence of Saccharomyces cerevisiae has identified a number of open reading frames that potentially encode structurally similar proteins termed Lsm (Like Sm) proteins. With the aim of analysing all possible interactions between the Lsm proteins and any protein encoded in the yeast genome, we performed exhaustive and iterative genomic two‐hybrid screens, starting with the Lsm proteins as baits. Indeed, extensive interactions amongst eight Lsm proteins were found that suggest the existence of a Lsm complex or complexes. These Lsm interactions apparently involve the conserved Sm domain that also mediates interactions between the Sm proteins. The screens also reveal functionally significant interactions with splicing factors, in particular with Prp4 and Prp24, compatible with genetic studies and with the reported association of Lsm proteins with spliceosomal U6 and U4/U6 particles. In addition, interactions with proteins involved in mRNA turnover, such as Mrt1, Dcp1, Dcp2 and Xrn1, point to roles for Lsm complexes in distinct RNA metabolic processes, that are confirmed in independent functional studies. These results provide compelling evidence that two‐hybrid screens yield functionally meaningful information about protein–protein interactions and can suggest functions for uncharacterized proteins, especially when they are performed on a genome‐wide scale. Copyright
Proceedings of the National Academy of Sciences of the United States of America | 2008
Laurence Decourty; Cosmin Saveanu; Kenza Zemam; Florence Hantraye; Emmanuel Frachon; Jean-Claude Rousselle; Micheline Fromont-Racine; Alain Jacquier
Describing at a genomic scale how mutations in different genes influence one another is essential to the understanding of how genotype correlates with phenotype and remains a major challenge in biology. Previous studies pointed out the need for accurate measurements of not only synthetic but also buffering interactions in the characterization of genetic networks and functional modules. We developed a sensitive and efficient method that allows such measurements at a genomic scale in yeast. In a pilot experiment (41 genome-wide screens), we quantified the fitness of 140,000 double deletion strains relative to the corresponding single mutants and identified many genetic interactions. In addition to synthetic growth defects (validated experimentally with factors newly identified as genetically interfering with mRNA degradation), most of the identified genetic interactions measured weak epistatic effects. These weak effects, rarely meaningful when considered individually, were crucial to defining specific signatures for many gene deletions and had a major contribution in defining clusters of functionally related genes.
Journal of Cell Biology | 2006
Alice Lebreton; Cosmin Saveanu; Laurence Decourty; Jean-Christophe Rain; Alain Jacquier; Micheline Fromont-Racine
Eukaryotic pre-ribosomes go through cytoplasmic maturation steps before entering translation. The nucleocytoplasmic proteins participating in these late stages of maturation are reimported to the nucleus. In this study, we describe a functional network focused on Rei1/Ybr267w, a strictly cytoplasmic pre-60S factor indirectly involved in nuclear 27S pre-ribosomal RNA processing. In the absence of Rei1, the nuclear import of at least three other pre-60S factors is impaired. The accumulation in the cytoplasm of a small complex formed by the association of Arx1 with a novel factor, Alb1/Yjl122w, inhibits the release of the putative antiassociation factor Tif6 from the premature large ribosomal subunits and its recycling to the nucleus. We propose a model in which Rei1 is a key factor for the coordinated dissociation and recycling of the last pre-60S factors before newly synthesized large ribosomal subunits enter translation.
Molecular and Cellular Biology | 2007
Axel B. Berger; Laurence Decourty; Gwenael Badis; Ulf Nehrbass; Alain Jacquier; Olivier Gadal
ABSTRACT Ribosome biogenesis requires equimolar amounts of four rRNAs and all 79 ribosomal proteins (RP). Coordinated regulation of rRNA and RP synthesis by eukaryotic RNA polymerases (Pol) I, III, and II is a key requirement for growth control. Using a novel global genetic approach, we showed that the absence of Hmo1 becomes lethal when combined with mutations of components of either the RNA Pol II or Pol I transcription machineries, of specific RP, or of the TOR pathway. Hmo1 directly interacts with both the region transcribed by Pol I and a subset of RP gene promoters. Down-regulation of Hmo1 expression affects RP gene expression. Upon TORC1 inhibition, Hmo1 dissociates from ribosomal DNA (rDNA) and some RP gene promoters simultaneously. Finally, in the absence of Hmo1, TOR-dependent repression of RP genes is alleviated. Therefore, we show here that Saccharomyces cerevisiae Hmo1 is directly involved in coordinating rDNA transcription by Pol I and RP gene expression by Pol II under the control of the TOR pathway.
Molecular and Cellular Biology | 2008
Laura Milligan; Laurence Decourty; Cosmin Saveanu; Juri Rappsilber; Hugo Ceulemans; Alain Jacquier; David Tollervey
ABSTRACT A genome-wide screen for synthetic lethal (SL) interactions with loss of the nuclear exosome cofactors Rrp47/Lrp1 or Air1 identified 3′→5′ exonucleases, the THO complex required for mRNP assembly, and Ynr024w (Mpp6). SL interactions with mpp6Δ were confirmed for rrp47Δ and nuclear exosome component Rrp6. The results of bioinformatic analyses revealed homology between Mpp6 and a human exosome cofactor, underlining the high conservation of the RNA surveillance system. Mpp6 is an RNA binding protein that physically associates with the exosome and was localized throughout the nucleus. The results of functional analyses demonstrated roles for Mpp6 in the surveillance of both pre-rRNA and pre-mRNAs and in the degradation of “cryptic” noncoding RNAs (ncRNAs) derived from intergenic regions and the ribosomal DNA spacer heterochromatin. Strikingly, these ncRNAs are also targeted by other exosome cofactors, including Rrp47, the TRAMP complex (which includes Air1), and the Nrd1/Nab3 complex, and are degraded by both Rrp6 and the core exosome. Heterochromatic transcripts and other ncRNAs are characterized by very rapid degradation, and we predict that functional redundancy is an important feature of ncRNA metabolism.
Nucleic Acids Research | 2011
Marie-Claire Daugeron; Tineke L. Lenstra; Martina Frizzarin; Basma El Yacoubi; Xipeng Liu; Agnès Baudin-Baillieu; Philip Lijnzaad; Laurence Decourty; Cosmin Saveanu; Alain Jacquier; Frank C. P. Holstege; Valérie de Crécy-Lagard; Herman van Tilbeurgh; Domenico Libri
The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t6A37) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t6A37 formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.
Journal of Biological Chemistry | 2006
Alice Lebreton; Cosmin Saveanu; Laurence Decourty; Alain Jacquier; Micheline Fromont-Racine
In Saccharomyces cerevisiae, a large variety of pre-ribosomal factors have been identified recently, a number of which are still of unknown function. The essential pre-ribosomal 30-kDa protein, Nsa2, was characterized as one of the most conserved proteins from yeast to human. We show here that the expression of the human orthologue TINP1 complements the repression of NSA2 in yeast. Nsa2 was co-purified in several pre-ribosomal complexes and found to be essential for the large ribosomal subunit biogenesis. Like several other factors of the pre-60 S particles, the absence of Nsa2 correlated with a decrease in the 25 S and 5.8 S ribosomal RNA levels, and with an accumulation of 27 SB pre-ribosomal RNA intermediates. We show that Nsa2 is a functional partner of the putative GTPase Nog1. In the absence of Nsa2, Nog1 was still able to associate with pre-ribosomal complexes blocked in maturation. In contrast, in the absence of Nog1, Nsa2 disappeared from pre-60 S complexes. Indeed, when ribosome biogenesis was blocked upstream of Nsa2, this short half-lived protein was largely depleted, suggesting that its cellular levels are tightly regulated.
PLOS ONE | 2012
Gérald Peyroche; Cosmin Saveanu; Marc Dauplais; Myriam Lazard; François Beuneu; Laurence Decourty; Christophe Malabat; Alain Jacquier; Sylvain Blanquet; Pierre Plateau
Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism.
Scientific Reports | 2017
Pierre Plateau; Cosmin Saveanu; Marc Dauplais; Laurence Decourty; Alain Jacquier; Sylvain Blanquet; Myriam Lazard
Selenomethionine, a dietary supplement with beneficial health effects, becomes toxic if taken in excess. To gain insight into the mechanisms of action of selenomethionine, we screened a collection of ≈5900 Saccharomyces cerevisiae mutants for sensitivity or resistance to growth-limiting amounts of the compound. Genes involved in protein degradation and synthesis were enriched in the obtained datasets, suggesting that selenomethionine causes a proteotoxic stress. We demonstrate that selenomethionine induces an accumulation of protein aggregates by a mechanism that requires de novo protein synthesis. Reduction of translation rates was accompanied by a decrease of protein aggregation and of selenomethionine toxicity. Protein aggregation was supressed in a ∆cys3 mutant unable to synthetize selenocysteine, suggesting that aggregation results from the metabolization of selenomethionine to selenocysteine followed by translational incorporation in the place of cysteine. In support of this mechanism, we were able to detect random substitutions of cysteinyl residues by selenocysteine in a reporter protein. Our results reveal a novel mechanism of toxicity that may have implications in higher eukaryotes.
bioRxiv | 2018
Marine Dehecq; Laurence Decourty; Abdelkader Namane; Caroline Proux; Joanne Kanaan; Hervé Le Hir; Alain Jacquier; Cosmin Saveanu
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to obtain the first large-scale quantitative characterization of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Detector (Upf1/2/3) and Effector. Effector contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association to RNA was dependent on Detector components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that in all eukaryotes NMD operates through successive Upf1-bound Detector and Effector complexes.