Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Micheline Fromont-Racine is active.

Publication


Featured researches published by Micheline Fromont-Racine.


Gene | 2003

Ribosome assembly in eukaryotes.

Micheline Fromont-Racine; Bruno Senger; Cosmin Saveanu; Franco Fasiolo

Ribosome synthesis is a highly complex and coordinated process that occurs not only in the nucleolus but also in the nucleoplasm and the cytoplasm of eukaryotic cells. Based on the protein composition of several ribosomal subunit precursors recently characterized in yeast, a total of more than 170 factors are predicted to participate in ribosome biogenesis and the list is still growing. So far the majority of ribosomal factors have been implicated in RNA maturation (nucleotide modification and processing). Recent advances gave insight into the process of ribosome export and assembly. Proteomic approaches have provided the first indications for a ribosome assembly pathway in eukaryotes and confirmed the dynamic character of the whole process.


Yeast | 2000

Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins

Micheline Fromont-Racine; Andrew E. Mayes; Adeline Brunet-Simon; Jean-Christophe Rain; Alan Colley; Ian Dix; Laurence Decourty; Nicolas Joly; Florence Ricard; Jean D. Beggs; Pierre Legrain

A set of seven structurally related Sm proteins forms the core of the snRNP particles containing the spliceosomal U1, U2, U4 and U5 snRNAs. A search of the genomic sequence of Saccharomyces cerevisiae has identified a number of open reading frames that potentially encode structurally similar proteins termed Lsm (Like Sm) proteins. With the aim of analysing all possible interactions between the Lsm proteins and any protein encoded in the yeast genome, we performed exhaustive and iterative genomic two‐hybrid screens, starting with the Lsm proteins as baits. Indeed, extensive interactions amongst eight Lsm proteins were found that suggest the existence of a Lsm complex or complexes. These Lsm interactions apparently involve the conserved Sm domain that also mediates interactions between the Sm proteins. The screens also reveal functionally significant interactions with splicing factors, in particular with Prp4 and Prp24, compatible with genetic studies and with the reported association of Lsm proteins with spliceosomal U6 and U4/U6 particles. In addition, interactions with proteins involved in mRNA turnover, such as Mrt1, Dcp1, Dcp2 and Xrn1, point to roles for Lsm complexes in distinct RNA metabolic processes, that are confirmed in independent functional studies. These results provide compelling evidence that two‐hybrid screens yield functionally meaningful information about protein–protein interactions and can suggest functions for uncharacterized proteins, especially when they are performed on a genome‐wide scale. Copyright


Nature Cell Biology | 2002

Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast.

Frank Feuerbach; Vincent Galy; Edgar Trelles-Sticken; Micheline Fromont-Racine; Alain Jacquier; Eric Gilson; Jean-Christophe Olivo-Marin; Harry Scherthan; Ulf Nehrbass

Recent experiments have shown that gene repression can be correlated with relocation of genes to heterochromatin-rich silent domains. Here, we investigate whether nuclear architecture and spatial positioning can contribute directly to the transcriptional activity of a genetic locus in Saccharomyces cerevisiae. By disassembling telomeric silent domains without altering the chromatin-mediated silencing machinery, we show that the transcriptional activity of silencer–reporter constructs depends on intranuclear position. This demonstrates that telomeric silent domains are actively involved in transcriptional silencing. Employing fluorescent in situ hybridization (FISH) in combination with genetic assays, we demonstrate that telomeres control the establishment of transcriptional states by reversible partitioning with the perinuclear silencing domains. Anchoring telomeres interferes with their ability to assume an active state, whereas disassembly of silencing domains prevents telomeres from assuming a repressed state. Our data support a model in which domains of enriched transcriptional regulators allow genes to determine transcriptional states by spatial positioning.


The EMBO Journal | 2001

Nog2p, a putative GTPase associated with pre‐60S subunits and required for late 60S maturation steps

Cosmin Saveanu; David Bienvenu; Abdelkader Namane; Pierre-Emmanuel Gleizes; Nicole Gas; Alain Jacquier; Micheline Fromont-Racine

Eukaryotic ribosome maturation depends on a set of well ordered processing steps. Here we describe the functional characterization of yeast Nog2p (Ynr053cp), a highly conserved nuclear protein. Nog2p contains a putative GTP‐binding site, which is essential in vivo. Kinetic and steady‐state measurements of the levels of pre‐rRNAs in Nog2p‐depleted cells showed a defect in 5.8S and 25S maturation and a concomitant increase in the levels of both 27SBS and 7SS precursors. We found Nog2p physically associated with large pre‐60S complexes highly enriched in the 27SB and 7S rRNA precursors. These complexes contained, besides a subset of ribosomal proteins, at least two additional factors, Nog1p, another putative GTP‐binding protein, and Rlp24p (Ylr009wp), which belongs to the Rpl24e family of archaeal and eukaryotic ribosomal proteins. In the absence of Nog2p, the pre‐60S ribosomal complexes left the nucleolus, but were retained in the nucleoplasm. These results suggest that transient, possibly GTP‐dependent association of Nog2p with the pre‐ribosomes might trigger late rRNA maturation steps in ribosomal large subunit biogenesis.


Molecular and Cellular Biology | 2003

Sequential Protein Association with Nascent 60S Ribosomal Particles

Cosmin Saveanu; Abdelkader Namane; Pierre-Emmanuel Gleizes; Alice Lebreton; Jean-Claude Rousselle; Jacqueline Noaillac-Depeyre; Nicole Gas; Alain Jacquier; Micheline Fromont-Racine

ABSTRACT Ribosome biogenesis in eukaryotes depends on the coordinated action of ribosomal and nonribosomal proteins that guide the assembly of preribosomal particles. These intermediate particles follow a maturation pathway in which important changes in their protein composition occur. The mechanisms involved in the coordinated assembly of the ribosomal particles are poorly understood. We show here that the association of preribosomal factors with pre-60S complexes depends on the presence of earlier factors, a phenomenon essential for ribosome biogenesis. The analysis of the composition of purified preribosomal complexes blocked in maturation at specific steps allowed us to propose a model of sequential protein association with, and dissociation from, early pre-60S complexes for several preribosomal factors such as Mak11, Ssf1, Rlp24, Nog1, and Nog2. The presence of either Ssf1 or Nog2 in complexes that contain the 27SB pre-rRNA defines novel, distinct pre-60S particles that contain the same pre-rRNA intermediates and that differ only by the presence or absence of specific proteins. Physical and functional interactions between Rlp24 and Nog1 revealed that the assembly steps are, at least in part, mediated by direct protein-protein interactions.


Molecular and Cellular Biology | 2005

The Splicing ATPase Prp43p Is a Component of Multiple Preribosomal Particles

Simon Lebaron; Carine Froment; Micheline Fromont-Racine; Jean-Christophe Rain; Bernard Monsarrat; Michèle Caizergues-Ferrer; Yves Henry

ABSTRACT Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.


Bioinformatics | 2007

GOlorize: a Cytoscape plug-in for network visualization with Gene Ontology-based layout and coloring

Olivier Garcia; Cosmin Saveanu; Melissa S. Cline; Micheline Fromont-Racine; Alain Jacquier; Benno Schwikowski; Tero Aittokallio

UNLABELLED We have implemented a graph layout algorithm that exposes Gene Ontology (GO) class structure on the network nodes. It can be used in conjunction with BiNGO plug-in to Cytoscape, which finds the GO categories over-represented in a given network. Our plug-in, named GOlorize, first highlights the class members with category-specific color-coding and then constructs an enhanced visualization of the network using a class-directed layout algorithm. AVAILABILITY http://www.cytoscape.org/plugins2.php. SUPPLEMENTARY INFORMATION Installation instructions and tutorial at http://www.cytoscape.org/plugins/GOlorize/GOlorizeUserGuide.pdf.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles

Laurence Decourty; Cosmin Saveanu; Kenza Zemam; Florence Hantraye; Emmanuel Frachon; Jean-Claude Rousselle; Micheline Fromont-Racine; Alain Jacquier

Describing at a genomic scale how mutations in different genes influence one another is essential to the understanding of how genotype correlates with phenotype and remains a major challenge in biology. Previous studies pointed out the need for accurate measurements of not only synthetic but also buffering interactions in the characterization of genetic networks and functional modules. We developed a sensitive and efficient method that allows such measurements at a genomic scale in yeast. In a pilot experiment (41 genome-wide screens), we quantified the fitness of 140,000 double deletion strains relative to the corresponding single mutants and identified many genetic interactions. In addition to synthetic growth defects (validated experimentally with factors newly identified as genetically interfering with mRNA degradation), most of the identified genetic interactions measured weak epistatic effects. These weak effects, rarely meaningful when considered individually, were crucial to defining specific signatures for many gene deletions and had a major contribution in defining clusters of functionally related genes.


Journal of Cell Biology | 2006

A functional network involved in the recycling of nucleocytoplasmic pre-60S factors

Alice Lebreton; Cosmin Saveanu; Laurence Decourty; Jean-Christophe Rain; Alain Jacquier; Micheline Fromont-Racine

Eukaryotic pre-ribosomes go through cytoplasmic maturation steps before entering translation. The nucleocytoplasmic proteins participating in these late stages of maturation are reimported to the nucleus. In this study, we describe a functional network focused on Rei1/Ybr267w, a strictly cytoplasmic pre-60S factor indirectly involved in nuclear 27S pre-ribosomal RNA processing. In the absence of Rei1, the nuclear import of at least three other pre-60S factors is impaired. The accumulation in the cytoplasm of a small complex formed by the association of Arx1 with a novel factor, Alb1/Yjl122w, inhibits the release of the putative antiassociation factor Tif6 from the premature large ribosomal subunits and its recycling to the nucleus. We propose a model in which Rei1 is a key factor for the coordinated dissociation and recycling of the last pre-60S factors before newly synthesized large ribosomal subunits enter translation.


Molecular and Cellular Biology | 2007

Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1.

Brigitte Pertschy; Cosmin Saveanu; Gertrude Zisser; Alice Lebreton; Martin Tengg; Alain Jacquier; Eva Liebminger; Berthold Nobis; Lisa Kappel; Ida van der Klei; Gregor Högenauer; Micheline Fromont-Racine; Helmut Bergler

ABSTRACT Allelic forms of DRG1/AFG2 confer resistance to the drug diazaborine, an inhibitor of ribosome biogenesis in Saccharomyces cerevisiae. Our results show that the AAA-ATPase Drg1 is essential for 60S maturation and associates with 60S precursor particles in the cytoplasm. Functional inactivation of Drg1 leads to an increased cytoplasmic localization of shuttling pre-60S maturation factors like Rlp24, Arx1, and Tif6. Surprisingly, Nog1, a nuclear pre-60S factor, was also relocalized to the cytoplasm under these conditions, suggesting that it is a previously unsuspected shuttling preribosomal factor that is exported with the precursor particles and very rapidly reimported. Proteins that became cytoplasmic under drg1 mutant conditions were blocked on pre-60S particles at a step that precedes the association of Rei1, a later-acting preribosomal factor. A similar cytoplasmic accumulation of Nog1 and Rlp24 in pre-60S-bound form could be seen after overexpression of a dominant-negative Drg1 variant mutated in the D2 ATPase domain. We conclude that the ATPase activity of Drg1 is required for the release of shuttling proteins from the pre-60S particles shortly after their nuclear export. This early cytoplasmic release reaction defines a novel step in eukaryotic ribosome maturation.

Collaboration


Dive into the Micheline Fromont-Racine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Lebreton

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge