Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Brechenmacher is active.

Publication


Featured researches published by Laurent Brechenmacher.


Plant Physiology | 2010

Complete Transcriptome of the Soybean Root Hair Cell, a Single-Cell Model, and Its Alteration in Response to Bradyrhizobium japonicum Infection

Marc Libault; Andrew D. Farmer; Laurent Brechenmacher; Jenny Drnevich; Raymond J. Langley; Damla D. Bilgin; Osman Radwan; David J. Neece; Steven J. Clough; Gregory D. May; Gary Stacey

Nodulation is the result of a mutualistic interaction between legumes and symbiotic soil bacteria (e.g. soybean [Glycine max] and Bradyrhizobium japonicum) initiated by the infection of plant root hair cells by the symbiont. Fewer than 20 plant genes involved in the nodulation process have been functionally characterized. Considering the complexity of the symbiosis, significantly more genes are likely involved. To identify genes involved in root hair cell infection, we performed a large-scale transcriptome analysis of B. japonicum-inoculated and mock-inoculated soybean root hairs using three different technologies: microarray hybridization, Illumina sequencing, and quantitative real-time reverse transcription-polymerase chain reaction. Together, a total of 1,973 soybean genes were differentially expressed with high significance during root hair infection, including orthologs of previously characterized root hair infection-related genes such as NFR5 and NIN. The regulation of 60 genes was confirmed by quantitative real-time reverse transcription-polymerase chain reaction. Our analysis also highlighted changes in the expression pattern of some homeologous and tandemly duplicated soybean genes, supporting their rapid specialization.


Plant Physiology | 2012

LYK4, a Lysin Motif Receptor-Like Kinase, Is Important for Chitin Signaling and Plant Innate Immunity in Arabidopsis

Jinrong Wan; Kiwamu Tanaka; Xue-Cheng Zhang; Geon Hui Son; Laurent Brechenmacher; Tran Hong Nha Nguyen; Gary Stacey

Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) was shown to be essential for chitin recognition, whereas in rice (Oryza sativa), the LysM-containing protein, CEBiP (for chitin elicitor-binding protein), was shown to be involved in chitin recognition. Unlike LYK1/CERK1, CEBiP lacks an intracellular kinase domain. Arabidopsis possesses three CEBiP-like genes. Our data show that mutations in these genes, either singly or in combination, did not compromise the response to chitin treatment. Arabidopsis also contains five LYK genes. Analysis of mutations in LYK2, -3, -4, or -5 showed that LYK4 is also involved in chitin signaling. The lyk4 mutants showed reduced induction of chitin-responsive genes and diminished chitin-induced cytosolic calcium elevation as well as enhanced susceptibility to both the bacterial pathogen Pseudomonas syringae pv tomato DC3000 and the fungal pathogen Alternaria brassicicola, although these phenotypes were not as dramatic as that seen in the lyk1/cerk1 mutants. Similar to LYK1/CERK1, the LYK4 protein was also localized to the plasma membrane. Therefore, LYK4 may play a role in the chitin recognition receptor complex to assist chitin signal transduction and plant innate immunity.


Plant Physiology | 2010

Soybean Metabolites Regulated in Root Hairs in Response to the Symbiotic Bacterium Bradyrhizobium japonicum

Laurent Brechenmacher; Zhentian Lei; Marc Libault; Seth D. Findley; Masayuki Sugawara; Michael J. Sadowsky; Lloyd W. Sumner; Gary Stacey

Nodulation of soybean (Glycine max) root hairs by the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum is a complex process coordinated by the mutual exchange of diffusible signal molecules. A metabolomic study was performed to identify small molecules produced in roots and root hairs during the rhizobial infection process. Metabolites extracted from roots and root hairs mock inoculated or inoculated with B. japonicum were analyzed by gas chromatography-mass spectrometry and ultraperformance liquid chromatography-quadrupole time of flight-mass spectrometry. These combined approaches identified 2,610 metabolites in root hairs. Of these, 166 were significantly regulated in response to B. japonicum inoculation, including various (iso)flavonoids, amino acids, fatty acids, carboxylic acids, and various carbohydrates. Trehalose was among the most strongly induced metabolites produced following inoculation. Subsequent metabolomic analyses of root hairs inoculated with a B. japonicum mutant defective in the trehalose synthase, trehalose 6-phosphate synthase, and maltooligosyltrehalose synthase genes showed that the trehalose detected in the inoculated root hairs was primarily of bacterial origin. Since trehalose is generally considered an osmoprotectant, these data suggest that B. japonicum likely experiences osmotic stress during the infection process, either on the root hair surface or within the infection thread.


Trends in Plant Science | 2010

Root hair systems biology

Marc Libault; Laurent Brechenmacher; Jianlin Cheng; Dong Xu; Gary Stacey

Plant functional genomic studies have largely measured the response of whole plants, organs and tissues, resulting in the dilution of the signal from individual cells. Methods are needed where the full repertoire of functional genomic tools can be applied to a single plant cell. Root hair cells are an attractive model to study the biology of a single, differentiated cell type because of their ease of isolation, polar growth, and role in water and nutrient uptake, as well as being the site of infection by nitrogen-fixing bacteria. This review highlights the recent advances in our understanding of plant root hair biology and examines whether the root hair has potential as a model for plant cell systems biology.


Molecular & Cellular Proteomics | 2012

Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum

Tran Hong Nha Nguyen; Laurent Brechenmacher; Joshua T. Aldrich; Therese R. Clauss; Marina A. Gritsenko; Kim K. Hixson; Marc Libault; Kiwamu Tanaka; Feng Yang; Qiuming Yao; Ljiljana Paša-Tolić; Dong Xu; Henry T. Nguyen; Gary Stacey

Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e. roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag eight-plex iTRAQ, enriched using Ni-NTA magnetic beads and subjected to nanoRPLC-MS/MS1 analysis using HCD and decision tree guided CID/ETD strategy. A total of 1625 unique phosphopeptides, spanning 1659 nonredundant phosphorylation sites, were detected from 1126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5-fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.


Plant Physiology | 2008

Establishment of a Protein Reference Map for Soybean Root Hair Cells

Laurent Brechenmacher; Joohyun Lee; Sherri Sachdev; Zhao Song; Tran Hong Nha Nguyen; Trupti Joshi; Nathan Oehrle; Marc Libault; Brian P. Mooney; Dong Xu; Bret Cooper; Gary Stacey

Root hairs are single tubular cells formed from the differentiation of epidermal cells on roots. They are involved in water and nutrient uptake and represent the infection site on leguminous roots by rhizobia, soil bacteria that establish a nitrogen-fixing symbiosis. Root hairs develop by polar cell expansion or tip growth, a unique mode of plant growth shared only with pollen tubes. A more complete characterization of root hair cell biology will lead to a better understanding of tip growth, the rhizobial infection process, and also lead to improvements in plant water and nutrient uptake. We analyzed the proteome of isolated soybean (Glycine max) root hair cells using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and shotgun proteomics (1D-PAGE-liquid chromatography and multidimensional protein identification technology) approaches. Soybean was selected for this study due to its agronomic importance and its root size. The resulting soybean root hair proteome reference map identified 1,492 different proteins. 2D-PAGE followed by mass spectrometry identified 527 proteins from total cell contents. A complementary shotgun analysis identified 1,134 total proteins, including 443 proteins that were specific to the microsomal fraction. Only 169 proteins were identified by the 2D-PAGE and shotgun methods, which highlights the advantage of using both methods. The proteins identified are involved not only in basic cell metabolism but also in functions more specific to the single root hair cell, including water and nutrient uptake, vesicle trafficking, and hormone and secondary metabolism. The data presented provide useful insight into the metabolic activities of a single, differentiated plant cell type.


Molecular Plant-microbe Interactions | 2008

Transcription profiling of soybean nodulation by Bradyrhizobium japonicum

Laurent Brechenmacher; Moon-Young Kim; Marisol Benitez; Min Li; Trupti Joshi; Bernarda Calla; Mei Phing Lee; Marc Libault; Lila O. Vodkin; Dong Xu; Suk-Ha Lee; Steven J. Clough; Gary Stacey

Legumes interact with nodulating bacteria that convert atmospheric nitrogen into ammonia for plant use. This nitrogen fixation takes place within root nodules that form after infection of root hairs by compatible rhizobia. Using cDNA microarrays, we monitored gene expression in soybean (Glycine max) inoculated with the nodulating bacterium Bradyrhizobium japonicum 4, 8, and 16 days after inoculation, timepoints that coincide with nodule development and the onset of nitrogen fixation. This experiment identified several thousand genes that were differentially expressed in response to B. japonicum inoculation. Expression of 27 genes was analyzed by quantitative reverse transcriptase-polymerase chain reaction, and their expression patterns mimicked the microarray results, confirming integrity of analyses. The microarray results suggest that B. japonicum reduces plant defense responses during nodule development. In addition, the data revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational, post-translational) that is likely essential for development of the symbiosis and adjustment to an altered nutritional status.


BMC Genomics | 2012

Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics

Trupti Joshi; Kapil Patil; Michael R. Fitzpatrick; Levi D. Franklin; Qiuming Yao; Jeffrey R Cook; Zheng Wang; Marc Libault; Laurent Brechenmacher; Babu Valliyodan; Xiaolei Wu; Jianlin Cheng; Gary Stacey; Henry T. Nguyen; Dong Xu

BackgroundSoybean Knowledge Base (SoyKB) is a comprehensive all-inclusive web resource for soybean translational genomics. SoyKB is designed to handle the management and integration of soybean genomics, transcriptomics, proteomics and metabolomics data along with annotation of gene function and biological pathway. It contains information on four entities, namely genes, microRNAs, metabolites and single nucleotide polymorphisms (SNPs).MethodsSoyKB has many useful tools such as Affymetrix probe ID search, gene family search, multiple gene/metabolite search supporting co-expression analysis, and protein 3D structure viewer as well as download and upload capacity for experimental data and annotations. It has four tiers of registration, which control different levels of access to public and private data. It allows users of certain levels to share their expertise by adding comments to the data. It has a user-friendly web interface together with genome browser and pathway viewer, which display data in an intuitive manner to the soybean researchers, producers and consumers.ConclusionsSoyKB addresses the increasing need of the soybean research community to have a one-stop-shop functional and translational omics web resource for information retrieval and analysis in a user-friendly way. SoyKB can be publicly accessed at http://soykb.org/.


Plant Journal | 2010

A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis

Marc Libault; Xue-Cheng Zhang; Manjula Govindarajulu; Jing Qiu; Yee T. Ong; Laurent Brechenmacher; R. Howard Berg; Andrea Hurley-Sommer; Christopher G. Taylor; Gary Stacey

A soybean homolog of the tomato FW2.2 gene, here named GmFWL1 (Glycine max FW2.2-like 1), was found to respond strongly to inoculation with the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum. In tomato, the FW2.2 gene is hypothesized to control 30% of the variance in fruit weight by negatively regulating cell division. In the present study, the induction of GmFWL1 expression in root hair cells and nodules in response to B. japonicum inoculation was documented using quantitative RT-PCR and transcriptional fusions to both beta-glucuronidase (GUS) and green fluorescent protein (GFP). RNAi-mediated silencing of GmFWL1 expression resulted in a significant reduction in nodule number, with a concomitant reduction in nuclear size and changes in chromatin structure. The reduction in nuclear size is probably due to a change in DNA heterochromatinization, as the ploidy level of wild-type and RNAi-silenced nodule cells was similar. GmFWL1 was localized to the plasma membrane. The data suggest that GmFWL1 probably acts indirectly, perhaps through a cellular cascade, to affect chromatin structure/nuclei architecture. As previously proposed in tomato, this function may be a result of effects on plant cell division.


Proteomics | 2012

Identification of soybean proteins from a single cell type: The root hair

Laurent Brechenmacher; Tran Hong Nha Nguyen; Kim K. Hixson; Marc Libault; Joshua T. Aldrich; Ljiljana Paša-Tolić; Gary Stacey

Root hairs (RH) are a terminally differentiated single cell type, mainly involved in water and nutrient uptake from the soil. The soybean RH cell represents an excellent model for the study of single cell systems biology. In this study, we identified 5702 proteins, with at least two peptides, from soybean RH using an accurate mass and time tag approach, establishing a comprehensive proteome reference map of this single cell type. We also showed that trypsin is the most appropriate enzyme for soybean proteomic studies by performing an in silico digestion of the soybean proteome using different proteases. Although the majority of proteins identified in this study are involved in basal metabolism, the function of others are more related to RH formation/function and include proteins involved in nutrient uptake (transporters) or vesicular trafficking (cytoskeleton and ras‐associated binding proteins). Interestingly, some of these proteins appear to be specifically detected in RH and constitute promising candidates for further studies to elucidate unique features of this single‐cell model.

Collaboration


Dive into the Laurent Brechenmacher's collaboration.

Top Co-Authors

Avatar

Gary Stacey

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Xu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory D. May

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Kiwamu Tanaka

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Qiuming Yao

University of Missouri

View shared research outputs
Researchain Logo
Decentralizing Knowledge