Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Chatel-Chaix is active.

Publication


Featured researches published by Laurent Chatel-Chaix.


Nucleic Acids Research | 2005

Interaction of Staufen1 with the 5′ end of mRNA facilitates translation of these RNAs

Samuel Dugré-Brisson; George Elvira; Karine Boulay; Laurent Chatel-Chaix; Andrew J. Mouland

Staufen1 is a component of transported ribonucleoprotein complexes. Genetic work in Drosophila has suggested that Staufen plays a role in the de-repression of translation of oskar mRNA following localization. To determine whether Staufen1 can play a similar role in mammals, we studied translation of transcripts in the presence or in the absence of Staufen1. Translationally repressed mRNAs were generated by fusing the structured human immunodeficiency virus type 1 trans-activating response (TAR) element to the 5′ end of a reporter transcript. In rabbit reticulocyte lysates and in mammalian cultured cells, the addition of Staufen1 resulted in the up-regulation of reporter activity when translation was driven by the TAR-bearing RNA. In contrast, Staufen1 had no effect on translation of efficiently translated mRNAs lacking an apparent structured 5′ end, suggesting that Staufen1-binding to the 5′ end is required for enhanced translation. Consistently, Staufen1 RNA-binding activity is necessary for this translational effect. In addition, similar up-regulation of translation was observed when Staufen1 was tethered to the 5′ end of mRNAs via other structured RNAs, the highest level of translational increase being obtained with the bona fide Staufen1-binding site of the Arf1 transcript. The expression of Staufen1 promoted polysomal loading of TAR-luciferase transcripts resulting in enhanced translation. Our results support a model in which the expression of Staufen1 and its interaction with the 5′ end of RNA and ribosomes facilitate translation initiation.


Molecular and Cellular Biology | 2004

Identification of Staufen in the human immunodeficiency virus type 1 Gag ribonucleoprotein complex and a role in generating infectious viral particles

Laurent Chatel-Chaix; Jean-François Clément; Catherine Martel; Véronique Bériault; Anne Gatignol; Andrew J. Mouland

ABSTRACT Staufen is a host protein that is selectively incorporated into human immunodeficiency virus type 1 (HIV-1) particles in a poorly defined process that involves the selection of HIV-1 genomic RNA for encapsidation and the activity of its third double-stranded RNA-binding domain (dsRBD3). To better understand this, we characterized its interactions with pr55Gag, the principal mediator of HIV-1 genomic RNA encapsidation. Chimeric proviruses harboring wild-type or mutant forms of Staufen were expressed in 293T cells. Cell fractionation analyses demonstrated that Staufen cosedimented with pr55Gag within detergent-resistant, trypsin-sensitive complexes that excluded mature capsid and matrix proteins. Coimmunoprecipitation and bioluminescence resonance energy transfer assays demonstrated a specific and direct interaction between Staufen and the nucleocapsid domain of pr55Gag in vitro and in live cells. This interaction is shown here to be mediated by Staufens dsRBD3, with a contribution from its C-terminal domain. Immunoprecipitation and reverse transcription-PCR analyses showed that the 9-kb genomic RNA was found within Staufen-containing immune complexes. Spliced HIV-1 RNAs were not detected in these Staufen complexes, indicating a preferential association of Staufen with the 9-kb species. These results substantiate that Staufen and pr55Gag interact directly during HIV-1 expression. Knockdown of Staufen expression by small interfering RNAs in HIV-1-expressing cells demonstrated that this cellular protein was important for the generation of infectious virus. These data show that Staufen, pr55Gag, and genomic RNA are part of the same intracellular complex and support a role for Staufen in pr55Gag function in viral assembly, genomic RNA encapsidation, and the generation of infectious viral particles.


Traffic | 2006

Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly.

Kathy Lévesque; Melanie Halvorsen; Levon Abrahamyan; Laurent Chatel-Chaix; Viviane Poupon; Heather Gordon; Anne Gatignol; Andrew J. Mouland

Few details are known about how the human immunodeficiency virus type 1 (HIV‐1) genomic RNA is trafficked in the cytoplasm. Part of this process is controlled by the activity of heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2). The role of hnRNP A2 during the expression of a bona fide provirus in HeLa cells is investigated in this study. Using immunofluorescence and fluorescence in situ hybridization techniques, we show that knockdown of hnRNP A2 expression in HIV‐1‐expressing cells results in the rapid accumulation of HIV‐1 genomic RNA in a distinct, cytoplasmic space that corresponds to the microtubule‐organizing center (MTOC). The RNA exits in the nucleus and accumulates at the MTOC region as a result of hnRNP A2 knockdown even during the expression of a provirus harboring mutations in the hnRNP A2‐response element (A2RE), the expression of which results in nuclear retention of genomic RNA. We also demonstrate that hnRNP A2 expression is required for downstream trafficking of genomic RNA from the MTOC in the cytoplasm. Genomic RNA localization at the MTOC that was both the result of hnRNP A2 knockdown and the overexpression of Rab7‐interacting lysosomal protein had little effect on pr55Gag synthesis but negatively influenced virus production and infectivity. These data indicate that altered HIV‐1 genomic RNA localization modulates viral assembly and that the MTOC serves as a central site to which HIV‐1 genomic RNA converges following its exit from the nucleus, with the host protein, hnRNP A2, playing a central role in taking it to and from this site in the cell.


Journal of Cell Science | 2010

Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA.

Levon Abrahamyan; Laurent Chatel-Chaix; Lara Ajamian; Miroslav P. Milev; Anne Monette; Jean-François Clément; Rujun Song; Martin Lehmann; Michael Laughrea; Graciela Lidia Boccaccio; Andrew J. Mouland

Human immunodeficiency virus type 1 (HIV-1) Gag selects for and mediates genomic RNA (vRNA) encapsidation into progeny virus particles. The host protein, Staufen1 interacts directly with Gag and is found in ribonucleoprotein (RNP) complexes containing vRNA, which provides evidence that Staufen1 plays a role in vRNA selection and encapsidation. In this work, we show that Staufen1, vRNA and Gag are found in the same RNP complex. These cellular and viral factors also colocalize in cells and constitute novel Staufen1 RNPs (SHRNPs) whose assembly is strictly dependent on HIV-1 expression. SHRNPs are distinct from stress granules and processing bodies, are preferentially formed during oxidative stress and are found to be in equilibrium with translating polysomes. Moreover, SHRNPs are stable, and the association between Staufen1 and vRNA was found to be evident in these and other types of RNPs. We demonstrate that following Staufen1 depletion, apparent supraphysiologic-sized SHRNP foci are formed in the cytoplasm and in which Gag, vRNA and the residual Staufen1 accumulate. The depletion of Staufen1 resulted in reduced Gag levels and deregulated the assembly of newly synthesized virions, which were found to contain several-fold increases in vRNA, Staufen1 and other cellular proteins. This work provides new evidence that Staufen1-containing HIV-1 RNPs preferentially form over other cellular silencing foci and are involved in assembly, localization and encapsidation of vRNA.


Journal of Virology | 2014

Dengue Virus- and Hepatitis C Virus-Induced Replication and Assembly Compartments: the Enemy Inside—Caught in the Web

Laurent Chatel-Chaix; Ralf Bartenschlager

ABSTRACT Dengue virus (DENV) and hepatitis C virus (HCV), members of the family Flaviviridae, are global human health concerns. As positive-strand RNA viruses, they each replicate in the cytoplasm of infected cells and induce distinct membranous replication compartments where most, if not all, steps of the viral life cycle occur. This Gem briefly reviews the most recent insights into the architecture and functional properties of membranous replication and assembly sites induced by DENV and HCV.


Cell Host & Microbe | 2016

Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses.

Laurent Chatel-Chaix; Mirko Cortese; Inés Romero-Brey; Silke Bender; Christopher John Neufeldt; Wolfgang Fischl; Pietro Scaturro; Nicole L. Schieber; Yannick Schwab; Bernd Fischer; Alessia Ruggieri; Ralf Bartenschlager

Summary With no antiviral drugs or widely available vaccines, Dengue virus (DENV) constitutes a public health concern. DENV replicates at ER-derived cytoplasmic structures that include substructures called convoluted membranes (CMs); however, the purpose of these membrane alterations remains unclear. We determine that DENV nonstructural protein (NS)4B, a promising drug target with unknown function, associates with mitochondrial proteins and alters mitochondria morphology to promote infection. During infection, NS4B induces elongation of mitochondria, which physically contact CMs. This restructuring compromises the integrity of mitochondria-associated membranes, sites of ER-mitochondria interface critical for innate immune signaling. The spatio-temporal parameters of CM biogenesis and mitochondria elongation are linked to loss of activation of the fission factor Dynamin-Related Protein-1. Mitochondria elongation promotes DENV replication and alleviates RIG-I-dependent activation of interferon responses. As Zika virus infection induces similar mitochondria elongation, this perturbation may protect DENV and related viruses from innate immunity and create a favorable replicative environment.


Journal of Virology | 2007

The Host Protein Staufen1 Participates in Human Immunodeficiency Virus Type 1 Assembly in Live Cells by Influencing pr55Gag Multimerization

Laurent Chatel-Chaix; Levon Abrahamyan; Céline Fréchina; Andrew J. Mouland

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) requires the sequential activities of virus-encoded proteins during replication. The activities of several host cell proteins and machineries are also critical to the completion of virus assembly and the release of infectious virus particles from cells. One of these proteins, the double-stranded RNA-binding protein Staufen1 (Stau1), selectively associates with the HIV-1 genomic RNA and the viral precursor Gag protein, pr55Gag. In this report, we tested whether Stau1 modulates pr55Gag assembly using a new and specific pr55Gag oligomerization assay based on bioluminescence resonance energy transfer (BRET) in both live cells and extracts after cell fractionation. Our results show that both the overexpression and knockdown of Stau1 increase the pr55Gag-pr55Gag BRET levels, suggesting a role for Stau1 in regulating pr55Gag oligomerization during assembly. This effect of Stau1 on pr55Gag oligomerization was observed only in membranes, a cellular compartment in which pr55Gag assembly primarily occurs. Consistently, expression of Stau1 harboring a vSrc myristylation signal led to a 6.5-fold enrichment of Stau1 in membranes and a corresponding enhancement in the Stau1-mediated effect on pr55Gag-pr55Gag BRET, demonstrating that Stau1 acts on assembly when targeted to membranes. A role for Stau1 in the formation of particles is further supported by the detection of membrane-associated detergent-resistant pr55Gag complexes and the increase of virus-like particle release when Stau1 expression levels are modulated. Our results indicate that Stau1 influences HIV-1 assembly by modulating pr55Gag-pr55Gag interactions, as shown in a live cell interaction assay. This likely occurs when Stau1 interacts with membrane-associated assembly intermediates.


Retrovirology | 2008

The host protein Staufen1 interacts with the Pr55Gag zinc fingers and regulates HIV-1 assembly via its N-terminus.

Laurent Chatel-Chaix; Karine Boulay; Andrew J. Mouland

BackgroundThe formation of new infectious human immunodeficiency type 1 virus (HIV-1) mainly relies on the homo-multimerization of the viral structural polyprotein Pr55Gag and on the recruitment of host factors. We have previously shown that the double-stranded RNA-binding protein Staufen 1 (Stau1), likely through an interaction between its third double-stranded RNA-binding domain (dsRBD3) and the nucleocapsid (NC) domain of Pr55Gag, participates in HIV-1 assembly by influencing Pr55Gag multimerization.ResultsWe now report the fine mapping of Stau1/Pr55Gag association using co-immunoprecipitation and live cell bioluminescence resonance energy transfer (BRET) assays. On the one hand, our results show that the Stau1-Pr55Gag interaction requires the integrity of at least one of the two zinc fingers in the NC domain of Pr55Gag but not that of the NC N-terminal basic region. Disruption of both zinc fingers dramatically impeded Pr55Gag multimerization and virus particle release. In parallel, we tested several Stau1 deletion mutants for their capacity to influence Pr55Gag multimerization using the Pr55Gag/Pr55Gag BRET assay in live cells. Our results revealed that a molecular determinant of 12 amino acids at the N-terminal end of Stau1 is necessary to increase Pr55Gag multimerization and particle release. However, this region is not required for Stau1 interaction with the viral polyprotein Pr55Gag.ConclusionThese data highlight that Stau1 is a modular protein and that Stau1 influences Pr55Gag multimerization via 1) an interaction between its dsRBD3 and Pr55Gag zinc fingers and 2) a regulatory domain within the N-terminus that could recruit host machineries that are critical for the completion of new HIV-1 capsids.


PLOS Pathogens | 2015

Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins

Pietro Scaturro; Mirko Cortese; Laurent Chatel-Chaix; Wolfgang Fischl; Ralf Bartenschlager

Non-structural protein 1 (NS1) is one of the most enigmatic proteins of the Dengue virus (DENV), playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E) and precursor Membrane (prM). Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.


PLOS Pathogens | 2013

Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

Martin Baril; Salwa Es-Saad; Laurent Chatel-Chaix; Karin Fink; Tram Pham; Valérie-Ann Raymond; Karine Audette; Anne-Sophie Guenier; Jean Duchaine; Marc J. Servant; Marc Bilodeau; Éric A. Cohen; Nathalie Grandvaux; Daniel Lamarre

To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

Collaboration


Dive into the Laurent Chatel-Chaix's collaboration.

Top Co-Authors

Avatar

Daniel Lamarre

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Martin Baril

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge