Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Coscoy is active.

Publication


Featured researches published by Laurent Coscoy.


Nature Reviews Immunology | 2007

Immune evasion by Kaposi's sarcoma-associated herpesvirus

Laurent Coscoy

To efficiently establish a persistent infection, Kaposis sarcoma-associated herpesvirus (KSHV; also known as HHV8) dedicates a large amount of its coding potential to produce proteins that antagonize the immune system of its host. These viral immunomodulators interfere with both the innate and adaptive immune responses and most of them are homologous to cellular proteins, suggesting that they have been pirated from the host during viral evolution. In this Review, I present recent advances in the understanding of immune evasion by KSHV, with a particular focus on the virally encoded modulators of immune responses that are unique to this virus.


Journal of Virology | 2008

The Specificities of Kaposi's Sarcoma-Associated Herpesvirus-Encoded E3 Ubiquitin Ligases Are Determined by the Positions of Lysine or Cysteine Residues within the Intracytoplasmic Domains of Their Targets

Ken Cadwell; Laurent Coscoy

ABSTRACT Kaposis sarcoma-associated herpesvirus encodes two homologous E3 ligases, MIR1 and MIR2, that mediate the ubiquitination and subsequent downregulation of several cell surface proteins, and in particular major histocompatibility complex class I (MHC-I) molecules. We have previously shown that, in addition to lysine ubiquitination, MIR1 has the unique ability of transferring ubiquitin onto MHC-I molecules lacking available lysine residues, in a cysteine-dependent manner. Here we report that MIR1 activity is maximal when either a lysine or cysteine residue is placed approximately 15 amino acids away from the transmembrane domain, whereas MIR2 preferentially targets residues, including cysteines, that are closer to the transmembrane domain. Thus MIR1 and -2 can distinguish their substrates based on the position of the lysine or cysteine residues, suggesting that these proteins have evolved to target different sets of surface molecules. These results indicate that the position of target residues within a substrate is an essential determinant of E3 ubiquitin ligase specificity.


Journal of Virology | 2008

Downregulation of the T-Cell Receptor Complex and Impairment of T-Cell Activation by Human Herpesvirus 6 U24 Protein

Brian M. Sullivan; Laurent Coscoy

ABSTRACT We have performed a screen aimed at identifying human herpesvirus 6 (HHV-6)-encoded proteins that modulate immune recognition. Here we show that the U24 protein encoded by HHV-6 variant A downregulates cell surface expression of the T-cell receptor (TCR)/CD3 complex, a complex essential to T-cell activation and the generation of an immune adaptive response. In the presence of U24, the TCR/CD3 complex is endocytosed but is not recycled back to the plasma membrane. Instead, it accumulates in early and late endosomes. Interestingly, whereas CD3 downregulation from the cell surface is normally associated with T-cell activation, U24 downregulates CD3 independently of T-cell activation. Moreover, we found that U24-expressing T cells are resistant to activation by antigen-presenting cells. HHV-6 has evolved a unique mechanism of inhibition of T-cell activation that may impair the establishment of an adaptive immune response. Furthermore, lymphocyte activation creates an environment favorable to the reactivation and replication of lymphotropic herpesviruses. Thus, by inhibiting T-cell activation, HHV-6 might limit its reactivation and thus minimize immune recognition.


Journal of Immunology | 2010

Stress-Regulated Targeting of the NKG2D Ligand Mult1 by a Membrane-Associated RING-CH Family E3 Ligase

Timothy J. Nice; Weiwen Deng; Laurent Coscoy; David H. Raulet

NKG2D is a stimulatory receptor expressed by NK cells and some T cell subsets. Expression of the self-encoded ligands for NKG2D is presumably tightly regulated to prevent autoimmune disorders while allowing detection of infected cells and developing tumors. The NKG2D ligand Mult1 is regulated at multiple levels, with a final layer of regulation controlling protein stability. In this article, we report that Mult1 cell-surface expression was prevented by two closely related E3 ubiquitin ligases membrane-associated RING-CH (MARCH)4 and MARCH9, members of an E3 family that regulates other immunologically active proteins. Lysines within the cytoplasmic domain of Mult1 were essential for this repression by MARCH4 or MARCH9. Downregulation of Mult1 by MARCH9 was reversed by heat-shock treatment, which resulted in the dissociation of the two proteins and increased the amount of Mult1 at the cell surface. These results identify Mult1 as a target for the MARCH family of E3 ligases and show that induction of Mult1 in response to heat shock is due to regulated association with its E3 ligases.


PLOS Pathogens | 2011

Expression of the RAE-1 Family of Stimulatory NK-Cell Ligands Requires Activation of the PI3K Pathway during Viral Infection and Transformation

Maria Tokuyama; Clarisse Lorin; Frédéric Delebecque; Heiyoun Jung; David H. Raulet; Laurent Coscoy

Natural killer (NK) cells are lymphocytes that play a major role in the elimination of virally-infected cells and tumor cells. NK cells recognize and target abnormal cells through activation of stimulatory receptors such as NKG2D. NKG2D ligands are self-proteins, which are absent or expressed at low levels on healthy cells but are induced upon cellular stress, transformation, or viral infection. The exact molecular mechanisms driving expression of these ligands remain poorly understood. Here we show that murine cytomegalovirus (MCMV) infection activates the phosphatidylinositol-3-kinase (PI3K) pathway and that this activation is required for the induction of the RAE-1 family of mouse NKG2D ligands. Among the multiple PI3K catalytic subunits, inhibition of the p110α catalytic subunit blocks this induction. Similarly, inhibition of p110α PI3K reduces cell surface expression of RAE-1 on transformed cells. Many viruses manipulate the PI3K pathway, and tumors frequently mutate the p110α oncogene. Thus, our findings suggest that dysregulation of the PI3K pathway is an important signal to induce expression of RAE-1, and this may represent a commonality among various types of cellular stresses that result in the induction of NKG2D ligands.


Journal of Biological Chemistry | 2011

Fas-associated Death Domain (FADD) and the E3 Ubiquitin-Protein Ligase TRIM21 Interact to Negatively Regulate Virus-induced Interferon Production

Jennifer A. Young; Decha Sermwittayawong; Hee-Jung Kim; Suruchi Nandu; Nam Sil An; Hediye Erdjument-Bromage; Paul Tempst; Laurent Coscoy; Astar Winoto

The production of cytokines such as type I interferon (IFN) is an essential component of innate immunity. Insufficient amounts of cytokines lead to host sensitivity to infection, whereas abundant cytokine production can lead to inflammation. A tight regulation of cytokine production is, thus, essential for homeostasis of the immune system. IFN-α production during RNA virus infection is mediated by the master transcription factor IRF7, which is activated upon ubiquitination by TRAF6 and phosphorylation by IKKϵ and TBK1 kinases. We found that Fas-associated death domain (FADD), first described as an apoptotic protein, is involved in regulating IFN-α production through a novel interaction with TRIM21. TRIM21 is a member of a large family of proteins that can impart ubiquitin modification onto its cellular targets. The interaction between FADD and TRIM21 enhances TRIM21 ubiquitin ligase activity, and together they cooperatively repress IFN-α activation in Sendai virus-infected cells. FADD and TRIM21 can directly ubiquitinate IRF7, affect its phosphorylation status, and interfere with the ubiquitin ligase activity of TRAF6. Conversely, a reduction of FADD and TRIM21 levels leads to higher IFN-α induction, IRF7 phosphorylation, and lower titers of RNA virus of infected cells. We conclude that FADD and TRIM21 together negatively regulate the late IFN-α pathway in response to viral infection.


Journal of Virology | 2008

Lack of Heparan Sulfate Expression in B-Cell Lines: Implications for Kaposi's Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus 68 Infections

Nadine Jarousse; Bala Chandran; Laurent Coscoy

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) and its murine homolog, murine gammaherpesvirus 68 (MHV68), are lymphotropic viruses that establish latent infection in their host. Surprisingly, while B cells are the main viral reservoir in vivo, B-cell lines are poorly permissive to infection by either MHV68 or KSHV. Here, we report that most B-cell lines express very little to no cell surface heparan sulfate (HS), a glycosaminoglycan that is essential for infection by these viruses. We found that Ext1, a key enzyme in the biosynthesis of HS, was expressed at a low level in these cells. Transfection of B-cell lines with Ext1 restored high HS expression at the cell surface. Overexpression of Ext1 in murine A20 and M12 B-cell lines increased MHV68 surface binding and enhanced the efficiency of infection. Finally, although it was not sufficient to allow efficient infection, the expression of HS on BJAB cells promoted KSHV binding at the cell surface. Thus, our results indicate that MHV68 and KSHV cycles are blocked in B-cell lines at the binding step due to a lack of surface HS.


PLOS Pathogens | 2011

Global mRNA Degradation during Lytic Gammaherpesvirus Infection Contributes to Establishment of Viral Latency

Justin M. Richner; Karen Clyde; Andrea C. Pezda; Benson Yee Hin Cheng; Tina Wang; G. Renuka Kumar; Sergio Covarrubias; Laurent Coscoy; Britt A. Glaunsinger

During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3′ end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment.


Cell Death & Differentiation | 2017

Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway

Suruchi N. Schock; Neha V Chandra; Yuefang Sun; Takashi Irie; Yoshinori Kitagawa; Bin Gotoh; Laurent Coscoy; Astar Winoto

Necroptosis is a form of necrotic cell death that requires the activity of the death domain-containing kinase RIP1 and its family member RIP3. Necroptosis occurs when RIP1 is deubiquitinated to form a complex with RIP3 in cells deficient in the death receptor adapter molecule FADD or caspase-8. Necroptosis may play a role in host defense during viral infection as viruses like vaccinia can induce necroptosis while murine cytomegalovirus encodes a viral inhibitor of necroptosis. To see how general the interplay between viruses and necroptosis is, we surveyed seven different viruses. We found that two of the viruses tested, Sendai virus (SeV) and murine gammaherpesvirus-68 (MHV68), are capable of inducing dramatic necroptosis in the fibrosarcoma L929 cell line. We show that MHV68-induced cell death occurs through the cytosolic STING sensor pathway in a TNF-dependent manner. In contrast, SeV-induced death is mostly independent of TNF. Knockdown of the RNA sensing molecule RIG-I or the RIP1 deubiquitin protein, CYLD, but not STING, rescued cells from SeV-induced necroptosis. Accompanying necroptosis, we also find that wild type but not mutant SeV lacking the viral proteins Y1 and Y2 result in the non-ubiquitinated form of RIP1. Expression of Y1 or Y2 alone can suppress RIP1 ubiquitination but CYLD is dispensable for this process. Instead, we found that Y1 and Y2 can inhibit cIAP1-mediated RIP1 ubiquitination. Interestingly, we also found that SeV infection of B6 RIP3−/− mice results in increased inflammation in the lung and elevated SeV-specific T cells. Collectively, these data identify viruses and pathways that can trigger necroptosis and highlight the dynamic interplay between pathogen-recognition receptors and cell death induction.


PLOS Pathogens | 2013

A Role for Host Activation-Induced Cytidine Deaminase in Innate Immune Defense against KSHV

Elena Bekerman; Diana Jeon; Michele Ardolino; Laurent Coscoy

Activation-induced cytidine deaminase (AID) is specifically induced in germinal center B cells to carry out somatic hypermutation and class-switch recombination, two processes responsible for antibody diversification. Because of its mutagenic potential, AID expression and activity are tightly regulated to minimize unwanted DNA damage. Surprisingly, AID expression has been observed ectopically during pathogenic infections. However, the function of AID outside of the germinal centers remains largely uncharacterized. In this study, we demonstrate that infection of human primary naïve B cells with Kaposis sarcoma-associated herpesvirus (KSHV) rapidly induces AID expression in a cell intrinsic manner. We find that infected cells are marked for elimination by Natural Killer cells through upregulation of NKG2D ligands via the DNA damage pathway, a pathway triggered by AID. Moreover, without having a measurable effect on KSHV latency, AID impinges directly on the viral fitness by inhibiting lytic reactivation and reducing infectivity of KSHV virions. Importantly, we uncover two KSHV-encoded microRNAs that directly regulate AID abundance, further reinforcing the role for AID in the antiviral response. Together our findings reveal additional functions for AID in innate immune defense against KSHV with implications for a broader involvement in innate immunity to other pathogens.

Collaboration


Dive into the Laurent Coscoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Choi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astar Winoto

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian M. Sullivan

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chen Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Cyrus Maher

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge