Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Gaté is active.

Publication


Featured researches published by Laurent Gaté.


Annals of Occupational Hygiene | 2012

Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells.

Yves Guichard; Julien Schmit; Christian Darne; Laurent Gaté; Michèle Goutet; Davy Rousset; Olivier Rastoix; R. Wrobel; Olivier Witschger; Aurélie Martin; Vanessa Fierro; Stéphane Binet

Potential differences in the toxicological properties of nanosized and non-nanosized particles have been notably pointed out for titanium dioxide (TiO(2)) particles, which are currently widely produced and used in many industrial areas. Nanoparticles of the iron oxides magnetite (Fe(3)O(4)) and hematite (Fe(2)O(3)) also have many industrial applications but their toxicological properties are less documented than those of TiO(2). In the present study, the in vitro cytotoxicity and genotoxicity of commercially available nanosized and microsized anatase TiO(2), rutile TiO(2), Fe(3)O(4), and Fe(2)O(3) particles were compared in Syrian hamster embryo (SHE) cells. Samples were characterized for chemical composition, primary particle size, crystal phase, shape, and specific surface area. In acellular assays, TiO(2) and iron oxide particles were able to generate reactive oxygen species (ROS). At the same mass dose, all nanoparticles produced higher levels of ROS than their microsized counterparts. Measurement of particle size in the SHE culture medium showed that primary nanoparticles and microparticles are present in the form of micrometric agglomerates of highly poly-dispersed size. Uptake of primary particles and agglomerates by SHE exposed for 24 h was observed for all samples. TiO(2) samples were found to be more cytotoxic than iron oxide samples. Concerning primary size effects, anatase TiO(2), rutile TiO(2), and Fe(2)O(3) nanoparticles induced higher cytotoxicity than their microsized counterparts after 72 h of exposure. Over this treatment time, anatase TiO(2) and Fe(2)O(3) nanoparticles also produced more intracellular ROS compared to the microsized particles. However, similar levels of DNA damage were observed in the comet assay after 24 h of exposure to anatase nanoparticles and microparticles. Rutile microparticles were found to induce more DNA damage than the nanosized particles. However, no significant increase in DNA damage was detected from nanosized and microsized iron oxides. None of the samples tested showed significant induction of micronuclei formation after 24 h of exposure. In agreement with previous size-comparison studies, we suggest that in vitro cytotoxicity and genotoxicity induced by metal oxide nanoparticles are not always higher than those induced by their bulk counterparts.


Environmental and Molecular Mutagenesis | 2015

Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 2: intratracheal instillation and intravenous injection.

Yves Guichard; Marie-Aline Maire; Sylvie Sébillaud; Caroline Fontana; Cristina Langlais; Jean-Claude Micillino; Christian Darne; Joanna Roszak; Maciej Stępnik; Valérie Fessard; Stéphane Binet; Laurent Gaté

Synthetic amorphous silica nanomaterials (SAS) are extensively used in food and tire industries. In many industrial processes, SAS may become aerosolized and lead to occupational exposure of workers through inhalation in particular. However, little is known about the in vivo genotoxicity of these particulate materials. To gain insight into the toxicological properties of four SAS (NM‐200, NM‐201, NM‐202, and NM‐203), rats are treated with three consecutive intratracheal instillations of 3, 6, or 12 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection (cumulative doses of 9, 18, and 36 mg/kg). Deoxyribonucleic acid (DNA) damage was assessed using erythrocyte micronucleus test and the standard and Fpg‐modified comet assays on cells from bronchoalveolar lavage fluid (BALF), lung, blood, spleen, liver, bone marrow, and kidney. Although all of the SAS caused increased dose‐dependent changes in lung inflammation as demonstrated by BALF neutrophilia, they did not induce any significant DNA damage. As the amount of SAS reaching the blood stream and subsequently the internal organs is probably to be low following intratracheal instillation, an additional experiment was performed with NM‐203. Rats received three consecutive intravenous injections of 5, 10, or 20 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection. Despite the hepatotoxicity, thrombocytopenia, and even animal death induced by this nanomaterial, no significant increase in DNA damage or micronucleus frequency was observed in SAS‐exposed animals. It was concluded that under experimental conditions, SAS induced obvious toxic effects but did cause any genotoxicity following intratracheal instillation and intravenous injection. Environ. Mol. Mutagen. 56:228–244, 2015.


Toxicology and Industrial Health | 2016

Cytotoxic and genotoxic evaluation of different synthetic amorphous silica nanomaterials in the V79 cell line

Yves Guichard; Caroline Fontana; E Chavinier; Francine Terzetti; Laurent Gaté; Stéphane Binet; Christian Darne

The nature of occupational risks and hazards in industries that produce or use synthetic amorphous silica (SAS) nanoparticles is still under discussion. Manufactured SAS occur in amorphous form and can be divided into two main types according to the production process, namely, pyrogenic silica (powder) and precipitated silica (powder, gel or colloid). The physical and chemical properties of SAS may vary in terms of particle size, surface area, agglomeration state or purity, and differences in their toxicity potential might therefore be expected. The aim of this study was to compare the cytotoxicity and genotoxicity of representative manufactured SAS samples in Chinese hamster lung fibroblasts (V79 cells). Five samples from industrial SAS producers were evaluated, that is, two pyrogenic SAS powders (with primary particle sizes of 20 nm and 25/70 nm), one precipitated SAS powder (20 nm) and two precipitated SAS colloids (15 and 40/80 nm). V79 cell cultures were treated with different concentrations of SAS pre-dispersed in bovine serum albumin –water medium. Pyr (pyrogenic) 20, Pre (precipitated) 20 and Col (colloid) 15 significantly decreased the cell viability after 24 h of exposure, whilst Pyr 25/70 and Col 40/80 had negligible effects. The cytotoxicity of Pyr 20, Pre 20 and Col 15 was revealed by the induction of apoptosis, and Pyr 20 and Col 15 also produced DNA damage. However, none of the SAS samples generated intracellular reactive oxidative species, micronuclei or genomic mutations in V79 cells after 24 h of exposure. Overall, the results of this study show that pyrogenic, precipitated and colloidal manufactured SAS of around 20 nm primary particle size can produce significant cytotoxic and genotoxic effects in V79 cells. In contrast, the coarser-grained pyrogenic and colloid SAS (approximately 50 nm) yielded negligible toxicity, despite having been manufactured by same processes as their finer-grained equivalents. To explain these differences, the influence of particle agglomeration and oxidative species formation is discussed.


Toxicology Letters | 2017

Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats.

Laurent Gaté; Clémence Disdier; Frédéric Cosnier; F. Gagnaire; Jérôme Devoy; Wadad Saba; Emilie Brun; Monique Chalansonnet; Aloïse Mabondzo

The increasing industrial use of nanoparticles (NPs) has raised concerns about their impact on human health. Since aging and exposure to environmental factors are linked to the risk for developing pathologies, we address the question of TiO2 NPs toxicokinetics in the context of a realistic occupational exposure. We report the biodistribution of titanium in healthy young adults (12-13-week-old) and in elderly rats (19-month-old) exposed to 10mg/m3 of a TiO2 nanostructured aerosol 6h/day, 5days/week for 4 weeks. We measured Ti content in major organs using inductively coupled plasma mass spectrometry immediately and up to 180days after the end of exposure. Large amounts of titanium were initially found in lung which were slowly cleared during the post-exposure period. From day 28, a small increase of Ti was found in the spleen and liver of exposed young adult rats. Such an increase was however never found in their blood, kidneys or brain. In the elderly group, translocation to extra-pulmonary organs was significant at day 90. Ti recovered from the spleen and liver of exposed elderly rats was higher than in exposed young adults. These data suggest that TiO2 NPs may translocate from the lung to extra-pulmonary organs where they could possibly promote systemic health effects.


Annals of Occupational Hygiene | 2010

In Vitro Cytotoxicity and Transforming Potential of Industrial Carbon Dust (Fibers and Particles) in Syrian Hamster Embryo (SHE) Cells

Christian Darne; Francine Terzetti; Catherine Coulais; J. Fournier; Yves Guichard; Laurent Gaté; Stéphane Binet

Carbon fibers have many applications, mainly in high-tech industries such as the aviation industry. Eleven carbon samples (fibers and particles) coming from an aeronautic group were tested for their cytotoxicity and carcinogenic potential using in vitro short-term assays in Syrian hamster embryo cells. These samples were taken during each important step of the process, i.e. from the initial heating of polyacrylonitrile fibers to pure carbon fibers. They were compared to an asbestos fiber, an amorphous silica, and two commercial graphite powders. Their physical-chemical characteristics and their capacity to release reactive oxygen species (ROS) were determined. This study showed that none of the carbon samples was able to generate ROS as measured by Electron Paramagnetic Resonance analysis, and in our biological assays, they demonstrated no morphological transformation potential and low cytotoxicity compared to positive control (chrysotile asbestos).


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016

In vitro comet and micronucleus assays do not predict morphological transforming effects of silica particles in Syrian Hamster Embryo cells.

Christian Darne; Catherine Coulais; Francine Terzetti; Caroline Fontana; Stéphane Binet; Laurent Gaté; Yves Guichard

Crystalline silica particles and asbestos have both been classified as carcinogenic by the International Agency for Research on Cancer (IARC). However, because of the limited data available, amorphous silica was not classifiable. In vitro, the carcinogenic potential of natural crystalline and amorphous silica particles has been revealed by the Syrian Hamster Embryo (SHE) cell transformation assay. On the other hand, the genotoxic potential of those substances has not been investigated in SHE cells. And yet, genotoxicity assays are commonly used for hazard evaluation and they are often used as in vitro assays of reference to predict a possible carcinogenic potential. The main objective of this study was to compare the genotoxic potential and the carcinogenic potential of different crystalline and amorphous silica particles in SHE cells. Three silica samples of different crystallinity were used: natural amorphous silica, partially crystallized silica and quartz silica particles. Their genotoxicity were tested through the in vitro micronucleus assay and the comet assay in SHE, and their carcinogenic potential through the SHE transformation assay. In addition, silica samples were also tested with the same genotoxicity assays in V79 hamster-lung cells, a common in vitro model for particle exposure. Results obtained in the micronucleus and the comet assays show that none of the silica was capable of inducing genotoxic effects in SHE cells and only the amorphous silica induced genotoxic effects in V79 cells. However in the SHE cell transformation assays, the partially crystallized and quartz silica were able to induce morphological cell transformation. Together, these data suggest that, in vitro, the short-term genotoxic assays alone are not sufficient to predict the hazard and the carcinogenic potential of this type of particles; SHE transformation assay appears a more reliable tool for this purpose and should be included in the in vitro battery assays for hazard assessment.


Drug and Chemical Toxicology | 2018

Metabolism of inhaled methylethylketone in rats

Frédéric Cosnier; Stéphane Grossmann; Hervé Nunge; Céline Brochard; Samuel Muller; Anne-Marie Lambert-Xolin; Sylvie Sébillaud; Benoît Rieger; Aurélie Thomas; Marie-Josèphe Décret; Manuella Burgart; Laurent Gaté; Benoît Cossec; Pierre Campo

Abstract Methylethylketone (MEK) is widely used in industry, often in combination with other compounds. Although nontoxic, it can make other chemicals harmful. This study investigates the fate of MEK in rat blood, brain and urine as well as its hepatic metabolism following inhalation over 1 month (at 20, 200 or 1400u2009ppm). MEK did not significantly accumulate in the organism: blood concentrations were similar after six-hour or 1-month inhalation periods, and brain concentrations only increased slightly after 1 month’s exposure. Urinary excretion, based on the major metabolites, 2,3-butanediols (± and meso forms), accounted for less than 2.4% of the amount inhaled. 2-Butanol, 3-hydroxy-2-butanone and MEK itself were only detectable in urine in the highest concentration conditions investigated, when metabolic saturation occurred. Although MEK exposure did not alter the total cytochrome P450 concentration, it induced activation of both CYP1A2 and CYP2E1 enzymes. In addition, the liver glutathione concentration (reduced and oxidized forms) decreased, as did glutathione S-transferase (GST) activity (at exposure levels over 200u2009ppm). These metabolic data could be useful for pharmacokinetic model development and/or verification and suggest the ability of MEK to influence the metabolism (and potentiate the toxicity) of other substances.


Journal of Analytical Toxicology | 2012

Simultaneous Determination of Aromatic Acid Metabolites of Styrene and Styrene-Oxide in Rat Urine by Gas Chromatography–Flame Ionization Detection

Frédéric Cosnier; Hervé Nunge; Benoît Cossec; Laurent Gaté

A convenient and reliable gas chromatographic method was developed for the simultaneous determination of six aromatic acid metabolites of styrene and styrene-oxide in rat urine; i.e., benzoic (BA), phenylacetic (PAA), mandelic (MA), phenylglyoxylic (PGA), hippuric (HA) and phenylaceturic (PAUA) acids. The method involves a one-pot esterification-extraction procedure, performed directly on urine without prior treatment. Analyses were performed on a RTX-1701 capillary column and the recovered isopropyl esters derivatives were detected by flame ionization detection. The analytical method was validated for selectivity, linearity, detection and quantification limits, recovery and intra-day and inter-day precisions. Calibration curves showed linearity in the range of 8-800 mg/L, except for HA and PAUA (40-800 mg/L). Limits of detection were between 0.2 (PPA) and 7.0 (PAUA) mg/L. The intra-day precisions determined at three concentrations levels were less than 5% for BA, PAA, MA and PGA and 9% for HA and PAUA, respectively. The corresponding mean inter-day precisions for these two groups were 8 and 16%, respectively. The method was successfully applied to quantitatively analyze styrene, styrene-oxide, ethylbenzene and toluene metabolites in urine samples from rats exposed by inhalation to these compounds at levels close to the occupational threshold limit values. Provided that this method can be transposed to human urine, it could have applications as part of biological monitoring for workers exposed to styrene or related compounds.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2017

In vitro cell transformation induced by synthetic amorphous silica nanoparticles

Caroline Fontana; Anaïs Kirsch; Carole Seidel; Léa Marpeaux; Christian Darne; Laurent Gaté; Aurélie Remy; Yves Guichard

Synthetic amorphous silica nanoparticles (SAS) are among the most widely produced and used nanomaterials, but little is known about their carcinogenic potential. This study aims to evaluate the ability of four different SAS, two precipitated, NM-200 and NM-201, and two pyrogenic, NM-202 and NM-203, to induce the transformation process. For this, we used the recently developed in vitro Bhas 42 cell transformation assay (CTA). The genome of the transgenic Bhas 42 cells contains several copies of the v-Ha-ras gene, making them particularly sensitive to tumor-promoter agents. The Bhas 42 CTA, which includes an initiation assay and a promotion assay, was validated in our laboratory using known soluble carcinogenic substances. Its suitability for particle-type substances was verified by using quartz Min-U-Sil 5 (Min-U-Sil) and diatomaceous earth (DE) microparticles. As expected given their known transforming properties, Min-U-Sil responded positively in the Bhas 42 CTA and DE responded negatively. Transformation assays were performed with SAS at concentrations ranging from 2μg/cm2 to 80μg/cm2. Results showed that all SAS have the capacity to induce transformed foci, interestingly only in the promotion assay, suggesting a mode of action similar to tumor-promoter substances. NM-203 exhibited transforming activity at a lower concentration than the other SAS. In conclusion, this study showed for the first time the transforming potential of different SAS, which act as tumor-promoter substances in the Bhas 42 model of cell transformation.


Xenobiotica | 2018

Toluene and methylethylketone: effect of combined exposure on their metabolism in rat

Frédéric Cosnier; Hervé Nunge; Elodie Bonfanti; Stéphane Grossmann; Anne-Marie Lambert-Xollin; Samuel Muller; Sylvie Sébillaud; Aurélie Thomas; Laurent Gaté; Pierre Campo

Abstract 1.u2003Multiple exposures are ubiquitous in industrial environments. In this article, we highlight the risks faced by workers and complete the data available on the metabolic impact of a common mixture: toluene (TOL) and methylethylketone (MEK). 2.u2003Rats were exposed by inhalation under controlled conditions either to each solvent individually, or to mixtures of the two. How the interaction between the two solvents affected their fate in the blood and brain, their main relevant urinary metabolites (o-cresol, benzylmercapturic acid for TOL and 2,3-butanediols for MEK) and their hepatic metabolism were investigated. 3.u2003Although the cytochrome P450 concentration was unchanged, and the activities of CYP1A2 and CYP2E1 isoforms were not additively or synergistically induced by co-exposure, TOL metabolism was inhibited by the presence of MEK (and vice versa). Depending on the relative proportions of each compound in the mixture, this sometimes resulted in a large increase in blood and brain concentrations. Apart from extreme cases (unbalanced mixtures), the amount of o-cresol and benzylmercapturic acid (and to a lesser extent 2,3-butanediols) excreted were proportional to the blood solvent concentrations. 4.u2003In a co-exposure context, ortho-cresol and benzylmercapturic acid can be used as urinary biomarkers in biomonitoring for employees to relatively accurately assess TOL exposure.

Collaboration


Dive into the Laurent Gaté's collaboration.

Top Co-Authors

Avatar

Frédéric Cosnier

Institut national de recherche et de sécurité

View shared research outputs
Top Co-Authors

Avatar

Christian Darne

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Binet

Institut national de recherche et de sécurité

View shared research outputs
Top Co-Authors

Avatar

Yves Guichard

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Caroline Fontana

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hervé Nunge

Institut national de recherche et de sécurité

View shared research outputs
Top Co-Authors

Avatar

Sylvie Sébillaud

Institut national de recherche et de sécurité

View shared research outputs
Top Co-Authors

Avatar

Emilie Brun

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

F. Gagnaire

Institut national de recherche et de sécurité

View shared research outputs
Top Co-Authors

Avatar

Francine Terzetti

Institut national de recherche et de sécurité

View shared research outputs
Researchain Logo
Decentralizing Knowledge