Laurent Geiser
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurent Geiser.
Journal of Chromatography A | 2000
Laurent Geiser; Samir Cherkaoui; Jean-Luc Veuthey
A nonaqueous capillary electrophoresis method, coupled to UV and electrospray mass spectrometry (ESI-MS), is described for the simultaneous analysis of Ecstasy and other related derivatives. Several electrophoretic and ESI-MS parameters were systematically investigated, such as electrolyte nature and concentration, organic solvent and sheath liquid compositions, nebulization gas pressure and drying gas flow-rate. The best results were achieved with an acetonitrile-methanol (80:20, v/v) mixture containing 25 mM ammonium formate and 1 M formic acid, an applied voltage of 30 kV and a separation temperature of 15 degrees C. Under optimized CE-ESI-MS conditions, separation of the investigated drugs was performed in less than 6 min, with a high efficiency. Method precision based on migration time and peak area was determined and the limits of detection, which depend on the tested compound, were established between 20 and 70 ng ml(-1) in the selected ion monitoring mode. Finally, the described method was successfully applied to the analysis of amphetamines in urine after a liquid-liquid extraction.
Electrophoresis | 2009
Laurent Geiser; Jean-Luc Veuthey
This review article presents recent developments and applications of non‐aqueous capillary electrophoresis (NACE): The text covers the period from the previous review (L. Geiser, J. L. Veuthey, Electrophoresis 2007, 28, 45–57) to summer 2008. We focus primarily on the analysis of pharmaceutical drugs by non‐aqueous solvents in CZE within different matrices including phytochemical plant extracts and biological fluids. We also extend our discussion to other application fields (e.g. food material and environmental samples) and to chiral separations by NACE. This review focuses on practical aspects of NACE, illustrating which organic solvents and electrolytes are best suited for NACE analyses and their compatibilities with different detection techniques, including UV, LIF and MS. The review emphasizes the interests of using non‐aqueous solvents in place of water for the analysis by CZE, and as an alternative to MEKC.
Journal of Proteomics | 2013
Florent Gluck; Christine Hoogland; Paola Antinori; Xavier Arnaud Robin; Frederic Nikitin; Anne Zufferey; Carla Pasquarello; Vanessa Fétaud; Loïc Dayon; Markus Müller; Frédérique Lisacek; Laurent Geiser; Denis F. Hochstrasser; Jean-Charles Sanchez; Alexander Scherl
High throughput protein identification and quantification analysis based on mass spectrometry are fundamental steps in most proteomics projects. Here, we present EasyProt (available at http://easyprot.unige.ch), a new platform for mass spectrometry data processing, protein identification, quantification and unexpected post-translational modification characterization. EasyProt provides a fully integrated graphical experience to perform a large part of the proteomic data analysis workflow. Our goal was to develop a software platform that would fulfill the needs of scientists in the field, while emphasizing ease-of-use for non-bioinformatician users. Protein identification is based on OLAV scoring schemes and protein quantification is implemented for both, isobaric labeling and label-free methods. Additional features are available, such as peak list processing, isotopic correction, spectra filtering, charge-state deconvolution and spectra merging. To illustrate the EasyProt platform, we present two identification and quantification workflows based on isobaric tagging and label-free methods.
Journal of Pharmaceutical and Biomedical Analysis | 2014
Dany Spaggiari; Laurent Geiser; Youssef Daali; Serge Rudaz
An assessment of cytochrome P450 (CYP) enzyme activity is essential for characterizing the phase I metabolism of biological systems or to evaluate the inhibition/induction properties of xenobiotics. CYPs have generally been investigated individually by single probes, and metabolite formation has been monitored by liquid chromatography-mass spectrometry (LC-MS). To increase the throughput, many probes have been applied to assess multiple CYP activities simultaneously within a single experiment. This strategy is called the cocktail approach, and it has already been reviewed for in vivo applications, but never for in vitro ones. This review focuses for the first time on an in vitro cocktail approach, and it references the most notable articles on this topic. The advantages and limitations of applying cocktails for the in vitro activity assessment of major human CYPs, namely, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and subfamily CYP3A, are discussed. This article considers the probe reaction selections for each CYP according to regulatory recommendations, probe metabolic properties (i.e., specificity and turnover), probe concentrations and analytical sensitivity, but it also highlights a challenge specific to cocktail design, which is probe-probe interaction. The last part of the review reports some methodologies for incubating these cocktails and discusses some important issues regarding the incubation time, enzyme concentrations and sample preparation.
Journal of Chromatography A | 2002
Laurent Geiser; Samir Cherkaoui; Jean-Luc Veuthey
A nonaqueous capillary electrophoresis (NACE) method, coupled with either UV or electrospray mass spectrometry (ESI-MS), is described for the simultaneous analysis of seven beta-blockers. The same electrolyte, namely 25 mM ammonium formate and 1 M formic acid, was used with different investigated organic solvents. In addition to frequently used organic solvents such as methanol (MeOH) and acetonitrile (MeCN), formamide and its derivatives were investigated. Formamide (FA) and N-methylformamide (NMF) present several interesting physico-chemical properties, one of them being a high dielectric constant (e). Since FA and NMF possess a high UV cutoff, beta-blockers with an absorbance above 250 nm were selected as model compounds in order to compare NACE-UV and NACE-MS performances. FA and NMF showed different selectivity compared to water, MeOH or MeCN, and also demonstrated a higher efficiency in terms of the number of theoretical plates (especially NMF). To overcome their unfavorable optical properties, hyphenation with MS detection appears as a promising technique, thanks to its benefits in terms of selectivity, sensitivity and universality. The practical compatibility of FA and NMF with ESI-MS detection in combination with a sheath liquid configuration was demonstrated. In comparison to UV detection, sensitivity was increased, while a high efficiency was maintained. In addition, the low and stable generated currents observed were evidences for the successful hyphenation with ESI-MS. Hence, FA and NMF seemed to be promising alternatives in NACE-ESI-MS, either used as pure organic solvent or as a mixture with MeOH or MeCN.
Journal of Chromatography A | 2013
Dany Spaggiari; Szabolcs Fekete; Philippe J. Eugster; Jean-Luc Veuthey; Laurent Geiser; Serge Rudaz; Davy Guillarme
When performing fast LC with 50mm narrow-bore columns packed with small particles, the LC instrumentation can give rise to non-negligible band broadening. In the present study, the loss in chromatographic efficiency attributed to nine different mass spectrometers of various brands, ionization source geometries and types of analyzers was assessed. In their standard configurations, the extra-column variance of these UHPLC-MS systems was estimated to vary from 20 to >100 μL(2). However, it was demonstrated that these differences arise exclusively from the chromatographic system (i.e., injector, tubing, valves, heater) and from the tubing employed to interface the UHPLC instrument with the MS device. By minimizing the tubing used for each UHPLC system, the extra-column variance was reduced to approximately 17-19 μL(2) at 600 μL/min, for all types of configurations. To achieve optimal chromatographic performance, it is therefore of prime importance to optimize the UHPLC configuration prior to conducting MS. The tubing located between the UHPLC system and the ionization source entrance was found to be particularly critical, as it contributes to band broadening even in the gradient mode. Using an optimized UHPLC-MS configuration, the loss in efficiency with a 50 × 2.1mm I.D. column was negligible for k>7. However, the efficiency loss with 1mm I.D. columns remained non-negligible for all current instrumentation, even for solutes with a value of k>20. Indeed, for a mixture of isobaric substrates and metabolites analyzed in gradient mode, the peak widths decreased by approximately 50% between a standard and optimized UHPLC-MS configuration, considering a 50 × 2.1mm, 1.7 μm column. The peak broadening was changed by 230% on a 50 × 1 mm, 1.7 μm stationary phase, for the same system configurations.
Chromatographia | 2000
Samir Cherkaoui; Laurent Geiser; Jean-Luc Veuthey
SummaryNonaqueous capillary electrophoresis (NACE) has been used to achieve rapid separations of basic drugs. A high electric field was obtained by using short capillaries. Baseline separations of basic drugs, including amphetamines, tropane alkaloids and local anesthetics, were achieved in 1 min by selection of the appropriate organic solvent and electrolyte composition. Thus, high-throughput analyses can be performed. Peak efficiency up to 9154 theoretical plates s−1 was achieved in a separation performed at 923V cm−1. No discernible loss in resolution was observed when a conventional capillary (64.5cm) was replaced by a short (32.5 cm) capillary.
Analytical and Bioanalytical Chemistry | 2014
Dany Spaggiari; Laurent Geiser; Youssef Daali; Serge Rudaz
The cocktail approach is an advantageous strategy used to monitor the activities of several cytochromes P450 (CYPs) in a single test to increase the throughput of in vitro phenotyping studies. In this study, a cocktail mixture was developed with eight CYP-specific probe substrates to simultaneously evaluate the activity of the most important CYPs, namely, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and the CYP3A subfamily. After cocktail incubation in the presence of human liver microsomes (HLMs), the eight selected substrates and their specific metabolites were analyzed by ultra-high-pressure liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry. Qualitative and quantitative data were simultaneously acquired to produce an overview of the extended phase I biotransformation routes for each probe substrate in the HLMs and to generate phenotypic profiles of various HLMs. A comparison of the cocktail strategy with an individual substrate assay for each CYP produced similar results. Moreover, the cocktail was tested on HLMs with different allelic variants and/or in the presence of selective inhibitors. The results were in agreement with the genetic polymorphisms of the CYPs and the expected effect of the alterations. All of these experiments confirmed the reliability of this cocktail assay for phenotyping of the microsomal CYPs.
European Journal of Pharmaceutical Sciences | 2015
Julieta Gradinaru; Stéphanie Anne Romand; Laurent Geiser; Pierre-Alain Carrupt; Dany Spaggiari; Serge Rudaz
A rapid method for the simultaneous determination of the in vitro activity of the 10 major human liver UDP-glucuronosyltransferase (UGT) enzymes was developed based on the cocktail approach. Specific substrates were first selected for each UGT: etoposide for UGT1A1, chenodeoxycholic acid for UGT1A3, trifluoperazine for UGT1A4, serotonin for UGT 1A6, isoferulic acid for UGT1A9, codeine for UGT2B4, azidothymidine for UGT2B7, levomedetomidine for UGT2B10, 4-hydroxy-3-methoxymethamphetamine for UGT2B15 and testosterone for UGT2B17. Optimal incubation conditions, including time-based experiments on cocktail metabolism in pooled HLMs that had been performed, were then investigated. A 45-min incubation period was found to be a favorable compromise for all the substrates in the cocktail. Ultra-high pressure liquid chromatography coupled to an electrospray ionization time-of-flight mass spectrometer was used to separate the 10 substrates and their UGT-specific glucuronides in less than 6 min. The ability of the cocktail to highlight the UGT inhibitory potential of xenobiotics was initially proven by using well-known UGT inhibitors (selective and nonselective) and then by relating some of the screening results obtained by using the cocktail approach with morphine glucuronidation (substrate highly glucuronidated by UGT 2B7). All the results were in agreement with both the literature and with the expected effect on morphine glucuronidation.
Journal of Pharmaceutical and Biomedical Analysis | 2003
Laurent Geiser; Emmanuel Varesio; Jean-Luc Veuthey
Metabisulfite is used as an antioxidant agent in a number of pharmaceutical formulations. In order to quantify simultaneously both metabisulfite and its oxidation product (sulfate), a capillary zone electrophoretic (CZE) method with indirect UV detection was developed. Best results were achieved with a background electrolyte (BGE) constituted of 15 mM pyromellitic acid, 15 mM tris-(hydroxymethyl)-aminomethane and 0.2 mM tetradecyltrimethylammonium bromide at pH 8.3 and an applied electrical field of 123 V/cm in a 32.5 cm fused silica capillary. Indirect UV detection was performed at a wavelength of 225 nm. In order to validate this method, an internal standard (IS), namely ammonium formate, was used. Moreover, due to the high chloride concentration in the pharmaceutical formulation, conductivity was adjusted by adding sodium chloride into standard solutions to prevent matrix effect. Linearity and accuracy were successfully tested in a concentration range of 33.3-250 microg/ml for sodium metabisulfite and of 50-375 microg/ml for sodium sulfate. Method precision was determined on six samples each day. Thereby, relative standard deviations (R.S.D.) of 6% and 12-13% were obtained for intra-day and inter-day precision, respectively. Considering the instability of metabisulfite and its use as an antioxidant agent and not as an active principle, the method was accepted and used for routine analyses.