Laurent Hébert
ANSES
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurent Hébert.
Infection and Immunity | 2007
Laurent Hébert; Pascal Courtin; Riccardo Torelli; Maurizio Sanguinetti; Marie-Pierre Chapot-Chartier; Yanick Auffray; Abdellah Benachour
ABSTRACT Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The ΔEF_0783 mutant and ΔEF_0783 ΔEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and ΔEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of ΔEF_0783 and ΔEF_0783 ΔEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis.
Journal of Bacteriology | 2012
Abdellah Benachour; Rabia Ladjouzi; André Le Jeune; Laurent Hébert; Simon Thorpe; Pascal Courtin; Marie-Pierre Chapot-Chartier; Tomasz K. Prajsnar; Simon J. Foster; Stéphane Mesnage
Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O-acetylation, which inhibits the enzymatic activity of lysozyme, and partly by d-alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O-acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N-acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen.
Journal of Bacteriology | 2011
Laurent Hébert; Bouziane Moumen; Fabien Duquesne; Marie-France Breuil; Claire Laugier; Jean-Michel Batto; Pierre Renault; Sandrine Petry
Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM), a sexually transmitted infection of horses. We herein report the genome sequence of T. equigenitalis strain MCE9, isolated in 2005 from the urethral fossa of a 4-year-old stallion in France.
PLOS ONE | 2012
Laurent Hébert; Bouziane Moumen; Nicolas Pons; Fabien Duquesne; Marie-France Breuil; Didier Goux; Jean-Michel Batto; Claire Laugier; Pierre Renault; Sandrine Petry
The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus.
Journal of Molecular Microbiology and Biotechnology | 2008
Cécile Muller; Maurizio Sanguinetti; Eliette Riboulet; Laurent Hébert; Brunella Posteraro; Giovanni Fadda; Yanick Auffray; Alain Rincé
The intracellular survival in mouse peritoneal macrophages of 8 Enterococcus faecalis response regulator mutants was tested to assess if the corresponding 2-component signal transduction systems (TCS) are involved in the ability of E. faecalis to survive in macrophages. Three mutants (err04, err05 and err06) are more susceptible than the wild-type JH2-2 strain and 1 is more resistant (err10). Then, characterization of the TCS Err04-Ehk04 and Err06-Ehk06 reveals that the first (homolog of PhoP-PhoR of Bacillus subtilis) is induced in phosphate deprivation conditions, regulates its own expression and plays a role in the expression of pstF encoding a phosphate-binding protein. The Err06-Ehk06 is involved in oxidative stress response. A mutation in the err06 gene increases sensitivity of the bacterium to H2O2. The err06-ehk06 operon is induced by H2O2 stress and controlled by 2 transcriptional start sites, of which 1 is specifically active in oxidative stress conditions. We also demonstrated that the expression of the catalase gene (kat) is partly dependant of the Err06-Ehk06 TCS.
Veterinary Microbiology | 2013
Fabien Duquesne; Laurent Hébert; Marie-France Breuil; Motoo Matsuda; Claire Laugier; Sandrine Petry
We describe here the development of a multilocus sequence typing (MLST) scheme for Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), and Taylorella asinigenitalis, a nonpathogenic bacterium. MLST was performed on a set of 163 strains collected in several countries over 35 years (1977-2012). The MLST data were analyzed using START2, MEGA 5.05 and eBURST, and can be accessed at http://pubmlst.org/taylorella/. Our results revealed a clonal population with 39 sequence types (ST) and no common ST between the two Taylorella species. The eBURST analysis grouped the 27 T. equigenitalis STs into four clonal complexes (CC1-4) and five unlinked STs. The 12 T. asinigenitalis STs were grouped into three clonal complexes (CC5-7) and five unlinked STs, among which CC1 (68.1% of the 113 T. equigenitalis) and CC5 (58.0% of the 50 T. asinigenitalis) were dominants. The CC1, still in circulation in France, contains isolates from the first CEM outbreaks that simultaneously emerged in several countries in the late 1970s. The emergence in different countries (e.g. France, Japan, and United Arab Emirates) of STs without any genetic relationship to CC1 suggests the existence of a natural worldwide reservoir that remains to be identified. T. asinigenitalis appears to behave same way since the American, Swedish and French isolates have unrelated STs. This first Taylorella sp. MLST is a powerful tool for further epidemiological investigations and population biology studies of the Taylorella genus.
PLOS ONE | 2012
Pauline Bidaud; Laurent Hébert; Corinne Barbey; Anne-Cécile Appourchaux; Riccardo Torelli; Maurizio Sanguinetti; Claire Laugier; Sandrine Petry
Rhodococcus equi is one of the most widespread causes of disease in foals aged from 1 to 6 months. R. equi possesses antioxidant defense mechanisms to protect it from reactive oxygen metabolites such as hydrogen peroxide (H2O2) generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify hydrogen peroxide. Recently, an analysis of the R. equi 103 genome sequence revealed the presence of four potential catalase genes. We first constructed ΔkatA-, ΔkatB-, ΔkatC-and ΔkatD -deficient mutants to study the ability of R. equi to survive exposure to H2O2 in vitro and within mouse peritoneal macrophages. Results showed that ΔkatA and, to a lesser extent ΔkatC, were affected by 80 mM H2O2. Moreover, katA deletion seems to significantly affect the ability of R. equi to survive within murine macrophages. We finally investigated the expression of the four catalases in response to H2O2 assays with a real time PCR technique. Results showed that katA is overexpressed 367.9 times (±122.6) in response to exposure to 50 mM of H2O2 added in the stationary phase, and 3.11 times (±0.59) when treatment was administered in the exponential phase. In untreated bacteria, katB, katC and katD were overexpressed from 4.3 to 17.5 times in the stationary compared to the exponential phase. Taken together, our results show that KatA is the major catalase involved in the extreme H2O2 resistance capability of R. equi.
Fems Microbiology Letters | 2010
Fabien Duquesne; Laurent Hébert; Corinne Sevin; Marie-France Breuil; J. Tapprest; Claire Laugier; Sandrine Petry
To characterize the potential epidemiological relationship between the origin of Rhodococcus equi strains and the type of their virulence plasmids, we performed a comparative analysis of virulence plasmid types encountered in 96 R. equi strains isolated from (1) autopsied horses, (2) organic samples (horse faeces, manure and straw) and (3) environmental samples. Our results revealed no clear epidemiological link between virulence plasmid type and the origin of R. equi strains isolated from horse-related environments. To understand this result, we determined the nucleotide sequence of the second most frequently isolated virulence plasmid type: a 87-kb type I (pVAPA116) plasmid and compared it with the previously sequenced (and most commonly encountered) 85-kb type I (pVAPA1037) plasmid. Our results show that the divergence between these two plasmids is mainly due to the presence of three allelic exchange loci, resulting in the deletion of two genes and the insertion of three genes in pVAPA116 compared with pVAPA1037. In conclusion, it appears that the divergence between the two sequenced rhodococcal virulence plasmids is not associated with the vap pathogenicity island and may result from an evolutionary process driven by a mobility-related invertase/resolvase invA-like gene.
Journal of Genomics | 2017
Laurent Hébert; Bouziane Moumen; Anthony Madeline; Sascha Steinbiss; Latifa Lakhdar; Nick Van Reet; Philippe Büscher; Claire Laugier; Julien Cauchard; Sandrine Petry
Trypanosoma equiperdum is the causative agent of dourine, a sexually-transmitted infection of horses. This parasite belongs to the subgenus Trypanozoon that also includes the agent of sleeping sickness (Trypanosoma brucei) and surra (Trypanosoma evansi). We herein report the genome sequence of a T. equiperdum strain OVI, isolated from a horse in South-Africa in 1976. This is the first genome sequence of the T. equiperdum species, and its availability will provide important insights for future studies on genetic classification of the subgenus Trypanozoon.
Veterinary Microbiology | 2017
Fabien Duquesne; Emilie Houssin; Corinne Sevin; Lucille Duytschaever; J. Tapprest; David Fretin; Laurent Hébert; Claire Laugier; Sandrine Petry
Rhodococcus equi causes pulmonary and extrapulmonary infections in animals and humans, with endemic situations and significant young foal mortality in stud farms worldwide. Despite its economic impact in the horse-breeding industry, the broad geographic and host distribution, global diversity and population structure of R. equi remain poorly characterised. In this context, we developed a multilocus sequence typing (MLST) scheme using 89 clinical and environmental R. equi of various origins and eight Rhodococcus sp. Data can be accessed at http://pubmlst.org/rhodococcus/. A clonal R. equi population was observed with 16 out of 37 sequence types (STs) grouped into six clonal complexes (CC) based on single-locus variants. One of the six CCs (CC3) is not host-specific, suggesting potential exchanges between different R. equi reservoirs. Most of the virulent equine R. equi CCs/unlinked STs were plasmid-type-specific. Despite this, marked genetic variability with the circulation of multiple R. equi genotypes was generally observed even within the same animal. Focusing on outbreaks, data indicated (i) the potential contagious transmission of R. equi during the 2012-Mayotte equine outbreak because of the poor genotype diversity of clinical strains; (ii) a potential porcine outbreak among the 30 Belgian farms investigated in 2013. This first Rhodococcus equi MLST is a powerful tool for further epidemiological investigations and population biology studies of R. equi isolates.