Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Humeau is active.

Publication


Featured researches published by Laurent Humeau.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Gene transfer in humans using a conditionally replicating lentiviral vector

Bruce L. Levine; Laurent Humeau; Jean D. Boyer; Rob-Roy MacGregor; Tessio Rebello; Xiaobin Lu; Gwendolyn K. Binder; Vladimir Slepushkin; Franck Lemiale; John R. Mascola; Frederic D. Bushman; Boro Dropulic; Carl H. June

We report findings from a clinical evaluation of lentiviral vectors in a phase I open-label nonrandomized clinical trial for HIV. This trial evaluated the safety of a conditionally replicating HIV-1-derived vector expressing an antisense gene against the HIV envelope. Five subjects with chronic HIV infection who had failed to respond to at least two antiviral regimens were enrolled. A single i.v. infusion of gene-modified autologous CD4 T cells was well tolerated in all patients. Viral loads were stable, and one subject exhibited a sustained decrease in viral load. CD4 counts remained steady or increased in four subjects, and sustained gene transfer was observed. Self-limiting mobilization of the vector was observed in four of five patients. There is no evidence for insertional mutagenesis after 21–36 months of observation. Immune function improved in four subjects. Lentiviral vectors appear promising for gene transfer to humans.


Journal of Gene Medicine | 2005

Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector.

Yajin Ni; Susan Sun; Ibe Oparaocha; Laurent Humeau; Brian M. Davis; Reuben Cohen; Gwendolyn K. Binder; Yung-Nien Chang; Vladimir Slepushkin; Boro Dropulic

An Erratum has been published for this article in Journal of Gene Medicine 7(6), 2005, 835.


Journal of Gene Medicine | 2004

Safe two-plasmid production for the first clinical lentivirus vector that achieves >99% transduction in primary cells using a one-step protocol.

Xiaobin Lu; Laurent Humeau; Vladimir Slepushkin; Gwendolyn K. Binder; Qiao Yu; Tatiana Slepushkina; Ziping Chen; Randall K. Merling; Brian M. Davis; Yung-Nien Chang; Boro Dropulic

We report the design of a unique two‐plasmid production system for the first lentiviral vector to be evaluated in humans, VRX496. VRX496 is an optimized VSV‐G pseudotyped vector derived from HIV‐1 that expresses antisense to the HIV envelope gene. We found that a two‐plasmid approach to production resulted in higher vector production titers when compared with a three‐plasmid approach, which is particularly important for vector production at the large scale. Therefore, we carefully designed a single packaging construct, VIRPAC, for safety by reducing its homology with VRX496 and by insertion of functionally validated genetic elements designed to reduce the risk of generation of a replication‐competent lentivirus (RCL). A native cis‐acting ribozyme is used to prevent read through into the envelope gene from the upstream gag‐pol genes in the packaging vector, thus preventing RNAs containing gag‐pol and env together for comparable safety to a three‐plasmid system. We demonstrate that there is no significant in vivo vector mobilization using a primary SCID‐hu mouse transplantation model, which correlates with the presence of an anti‐HIV payload and suggests that inclusion of antisense may be a useful tool to restrict mobilization in other vector constructs. Gene transfer is achieved using a one‐step transduction procedure that is simple and clinically translatable, which reaches stable transduction efficiencies of >99% in CD4+ T lymphocytes within 3 days of culture initiation. Copyright


Blood | 2013

Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV.

Pablo Tebas; David Stein; Gwendolyn Binder-Scholl; Rithun Mukherjee; Troy Brady; Tessio Rebello; Laurent Humeau; Michael Kalos; Emmanouil Papasavvas; Luis J. Montaner; Daniel Schullery; Farida Shaheen; Andrea L. Brennan; Zhaohui Zheng; Julio Cotte; Vladimir Slepushkin; Elizabeth Veloso; Adonna Mackley; Wei-Ting Hwang; Faten Aberra; Jenny Zhan; Jean D. Boyer; Ronald G. Collman; Frederic D. Bushman; Bruce L. Levine; Carl H. June

We report the safety and tolerability of 87 infusions of lentiviral vector–modified autologous CD4 T cells (VRX496-T; trade name, Lexgenleucel-T) in 17 HIV patients with well-controlled viremia. Antiviral effects were studied during analytic treatment interruption in a subset of 13 patients. VRX496-T was associated with a decrease in viral load set points in 6 of 8 subjects (P = .08). In addition, A → G transitions were enriched in HIV sequences after infusion, which is consistent with a model in which transduced CD4 T cells exert antisense-mediated genetic pressure on HIV during infection. Engraftment of vector-modified CD4 T cells was measured in gut-associated lymphoid tissue and was correlated with engraftment in blood. The engraftment half-life in the blood was approximately 5 weeks, with stable persistence in some patients for up to 5 years. Conditional replication of VRX496 was detected periodically through 1 year after infusion. No evidence of clonal selection of lentiviral vector–transduced T cells or integration enrichment near oncogenes was detected. This is the first demonstration that gene-modified cells can exert genetic pressure on HIV. We conclude that gene-modified T cells have the potential to decrease the fitness of HIV-1 and conditionally replicative lentiviral vectors have a promising safety profile in T cells.


Journal of Virology | 2008

Mode of Transmission Affects the Sensitivity of Human Immunodeficiency Virus Type 1 to Restriction by Rhesus TRIM5α

Max W. Richardson; Richard G. Carroll; Matthew Stremlau; Nikolay Korokhov; Laurent Humeau; Guido Silvestri; Joseph Sodroski; James L. Riley

ABSTRACT Rhesus TRIM5α (rhTRIM5α), but not human TRIM5α (huTRIM5α), potently inhibits human immunodeficiency virus (HIV) infection and is thus a potentially valuable therapeutic tool. Primary human CD4 T cells engineered to express rhTRIM5α were highly resistant to cell-free HIV type 1 (HIV-1) infection. However, when cocultured with unmodified T cells, rhTRIM5α-expressing cells became highly permissive to HIV-1 infection. Physical separation of rhTRIM5α-expressing cells and unmodified cells revealed that rhTRIM5α efficiently restricts cell-free but not cell-associated HIV transmission. Furthermore, we observed that HIV-infected human cells could infect rhesus CD4 T cells by cell-to-cell contact, but the infection was self-limiting. Subsequently, we noted that a spreading infection ensued when HIV-1-infected rhTRIM5α-expressing human cells were cultured with huTRIM5α- but not rhTRIM5α-expressing cells. Our results suggest that cell-associated HIV transmission in humans is blocked only when both donor and recipient cells express rhTRIM5α. These studies further define the role of rhTRIM5α in cell-free and cell-associated HIV transmission and delineate the utility of rhTRIM5α in anti-HIV therapy.


Journal of Gene Medicine | 2013

Patient monitoring and follow-up in lentiviral clinical trials

Gerard J. McGarrity; Gloria Hoyah; April Winemiller; Kris Andre; David Stein; Gary Blick; Richard N. Greenberg; Clifford Kinder; Andrew R. Zolopa; Gwen Binder-Scholl; Pablo Tebas; Carl H. June; Laurent Humeau; Tessio Rebello

Lentiviral vectors are being used with increasing frequency in human clinical trials. We were the first to use lentiviral vectors in clinical trials in 2003. Our lentiviral vector encoded a long RNA antisense sequence to the HIV‐1 envelope and was used in an ex vivo autologous setting to provide viral load control in HIV‐1 positive subjects failing anti‐HIV therapy. A total of 65 subjects have been treated in Phase 1 and Phase 2 trials in six institutions.


Experimental Hematology | 2000

Differential effects of interleukin-3, interleukin-7, interleukin 15, and granulocyte-macrophage colony-stimulating factor in the generation of natural killer and B cells from primitive human fetal liver progenitors.

Marcus O. Muench; Laurent Humeau; Bettina W. Paek; Tatsuo Ohkubo; Lewis L. Lanier; Craig T. Albanese; Alicia Bárcena

The regulatory roles of a number of early-acting growth factors on the generation of natural killer (NK) cells and B cells from primitive progenitors were studied. Experiments focused on the contributions of granulocyte-macrophage colony-stimulates factor (GM-CSF) and interleukin-3 (IL-3) to the regulation of the early events of lymphopoiesis.Two progenitor populations isolated from human fetal liver were studied, CD38(-)CD34(++)lineage(-) (Lin(-)) cells (candidate hematopoietic stem cells [HSCs]) and the more mature CD38(+)CD34(++)Lin(-) cells. The effects of different cytokines on the generation of CD56(+)CD3(-) NK cells and CD19(+) B cells were studied in serum-deprived cultures in the absence of stroma.NK cells generated in vitro were able to kill NK-sensitive target cells, expressed NK-associated marker CD161 (NKR-P1A), but exhibited little or no expression of CD2, CD8, CD16, CD94/NKG2A, or killer cell inhibitory receptors (KIRs). Among the cytokine combinations tested, kit ligand (KL) and IL-15 provided the best conditions for generating CD56(+) NK cells from CD38(+)CD34(++)Lin(-) cells. However, either flk-2/flt3 ligand (FL), GM-CSF, IL-3, or IL-7 could partially substitute KL. All of these cytokines also supported the growth of NK-cell progenitors from candidate HSC, with the combination of IL-15, KL, GM-CSF, and FL generating the greatest number of CD56(+) cells. B cells were generated from both progenitor populations in response to the combined effects of KL, FL, and IL-7. Both B and NK cells were generated with the further addition of IL-15 to these cultures. The in vitro generated B cells were CD10(+), CD19(+), HLA-DR(+), HLA-DQ(+), and some were CD20(+), but no cytoplasmic or surface immunoglobulin M expression was observed. In contrast with NK lymphopoiesis, GM-CSF, IL-3, and IL-15 had no effect on the generation of B cells from CD38(-)CD34(++)Lin(-) cells, and GM-CSF inhibited B-cell generation from CD38(+)CD34(++)Lin(-) progenitors. These findings indicate a differential regulation of NK and B lymphopoiesis beginning in the early stages of hematopoiesis as exemplified by the distinctive roles of IL-7, IL-15, GM-CSF, and IL-3.


npj Vaccines | 2016

In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine

Karuppiah Muthumani; Bryan D. Griffin; Sangya Agarwal; Sagar Kudchodkar; Emma L. Reuschel; Hyeree Choi; Kimberly A. Kraynyak; Elizabeth K Duperret; Amelia Keaton; Christopher W. Chung; Yinho K Kim; Stephanie A. Booth; Trina Racine; Jian Yan; Matthew P. Morrow; Jingjing Jiang; Brian Lee; Stephanie Ramos; Kate E. Broderick; Charles Reed; Amir S. Khan; Laurent Humeau; Kenneth E. Ugen; Young Kyoung Park; Joel N. Maslow; Niranjan Y. Sardesai; J. Joseph Kim; Gary P. Kobinger; David B. Weiner

Significant concerns have been raised owing to the rapid global spread of infection and disease caused by the mosquito-borne Zika virus (ZIKV). Recent studies suggest that ZIKV can also be transmitted sexually, further increasing the exposure risk for this virus. Associated with this spread is a dramatic increase in cases of microcephaly and additional congenital abnormalities in infants of ZIKV-infected mothers, as well as a rise in the occurrence of Guillain Barre’ syndrome in infected adults. Importantly, there are no licensed therapies or vaccines against ZIKV infection. In this study, we generate and evaluate the in vivo efficacy of a novel, synthetic, DNA vaccine targeting the pre-membrane+envelope proteins (prME) of ZIKV. Following initial in vitro development and evaluation studies of the plasmid construct, mice and non-human primates were immunised with this prME DNA-based immunogen through electroporation-mediated enhanced DNA delivery. Vaccinated animals were found to generate antigen-specific cellular and humoral immunity and neutralisation activity. In mice lacking receptors for interferon (IFN)-α/β (designated IFNAR−/−) immunisation with this DNA vaccine induced, following in vivo viral challenge, 100% protection against infection-associated weight loss or death in addition to preventing viral pathology in brain tissue. In addition, passive transfer of non-human primate anti-ZIKV immune serum protected IFNAR−/− mice against subsequent viral challenge. This study in NHP and in a pathogenic mouse model supports the importance of immune responses targeting prME in ZIKV infection and suggests that additional research on this vaccine approach may have relevance for ZIKV control and disease prevention in humans.


PLOS ONE | 2010

Survival of the Fittest: Positive Selection of CD4+ T Cells Expressing a Membrane-Bound Fusion Inhibitor Following HIV-1 Infection

Janine Kimpel; Stephen E. Braun; Gang Qiu; Fay E. Wong; Michelle Conolle; Jörn E. Schmitz; Christian Brendel; Laurent Humeau; Boro Dropulic; John J. Rossi; Annemarie Berger; Dorothee von Laer; R. Paul Johnson

Although a variety of genetic strategies have been developed to inhibit HIV replication, few direct comparisons of the efficacy of these inhibitors have been carried out. Moreover, most studies have not examined whether genetic inhibitors are able to induce a survival advantage that results in an expansion of genetically-modified cells following HIV infection. We evaluated the efficacy of three leading genetic strategies to inhibit HIV replication: 1) an HIV-1 tat/rev-specific small hairpin (sh) RNA; 2) an RNA antisense gene specific for the HIV-1 envelope; and 3) a viral entry inhibitor, maC46. In stably transduced cell lines selected such that >95% of cells expressed the genetic inhibitor, the RNA antisense envelope and viral entry inhibitor maC46 provided the strongest inhibition of HIV-1 replication. However, when mixed populations of transduced and untransduced cells were challenged with HIV-1, the maC46 fusion inhibitor resulted in highly efficient positive selection of transduced cells, an effect that was evident even in mixed populations containing as few as 1% maC46-expressing cells. The selective advantage of the maC46 fusion inhibitor was also observed in HIV-1-infected cultures of primary T lymphocytes as well as in HIV-1-infected humanized mice. These results demonstrate robust inhibition of HIV replication with the fusion inhibitor maC46 and the antisense Env inhibitor, and importantly, a survival advantage of cells expressing the maC46 fusion inhibitor both in vitro and in vivo. Evaluation of the ability of genetic inhibitors of HIV-1 replication to confer a survival advantage on genetically-modified cells provides unique information not provided by standard techniques that may be important in the in vivo efficacy of these genes.


Journal of Virology | 2009

The CXCR4-Tropic Human Immunodeficiency Virus Envelope Promotes More-Efficient Gene Delivery to Resting CD4+ T Cells than the Vesicular Stomatitis Virus Glycoprotein G Envelope

Luis M. Agosto; Jianqing J. Yu; Megan K. Liszewski; Clifford Baytop; Nikolay Korokhov; Laurent Humeau; Una O'Doherty

ABSTRACT Current gene transfer protocols for resting CD4+ T cells include an activation step to enhance transduction efficiency. This step is performed because it is thought that resting cells are resistant to transduction by lentiviral-based gene therapy vectors. However, activating resting cells prior to transduction alters their physiology, with foreseeable and unforeseeable negative consequences. Thus, it would be desirable to transduce resting CD4+ T cells without activation. We recently demonstrated, contrary to the prevailing belief, that wild-type human immunodeficiency virus (HIV) integrates into resting CD4+ T cells. Based on that finding, we investigated whether a commonly used, vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped lentiviral gene therapy vector could also integrate into resting CD4+ T cells. To investigate this, we inoculated resting CD4+ T cells with lentiviral particles that were pseudotyped with VSV-G or CXCR4-tropic HIV Env and assayed binding, fusion, reverse transcription, and integration. We found that the VSV-G-pseudotyped lentiviral vector failed to fuse to resting CD4+ T cells while HIV Env-pseudotyped lentiviral vectors fused, reverse transcribed, and integrated in resting cells. Our findings suggest that HIV Env could be used effectively for the delivery of therapeutic genes to resting CD4+ T cells and suggest that fusion may be the critical step restricting transduction of resting CD4+ T cells by lentiviral gene therapy vectors.

Collaboration


Dive into the Laurent Humeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boro Dropulic

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Yan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew P. Morrow

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jean D. Boyer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Carl H. June

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge