Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate E. Broderick is active.

Publication


Featured researches published by Kate E. Broderick.


The Lancet | 2015

Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial

Cornelia L. Trimble; Matthew P. Morrow; Kimberly A. Kraynyak; Xuefei Shen; Michael J. Dallas; Jian Yan; Lance Edwards; R Lamar Parker; Lynette Denny; Mary Giffear; Ami Shah Brown; Kathleen Marcozzi-Pierce; Divya Shah; Anna Slager; Albert Sylvester; Amir R. Khan; Kate E. Broderick; Robert J Juba; Timothy A Herring; Jean D. Boyer; Jessica Lee; Niranjan Y. Sardesai; David B. Weiner; Mark L. Bagarazzi

BACKGROUND Despite preventive vaccines for oncogenic human papillomaviruses (HPVs), cervical intraepithelial neoplasia (CIN) is common, and current treatments are ablative and can lead to long-term reproductive morbidity. We assessed whether VGX-3100, synthetic plasmids targeting HPV-16 and HPV-18 E6 and E7 proteins, delivered by electroporation, would cause histopathological regression in women with CIN2/3. METHODS Efficacy, safety, and immunogenicity of VGX-3100 were assessed in CIN2/3 associated with HPV-16 and HPV-18, in a randomised, double-blind, placebo-controlled phase 2b study. Patients from 36 academic and private gynaecology practices in seven countries were randomised (3:1) to receive 6 mg VGX-3100 or placebo (1 mL), given intramuscularly at 0, 4, and 12 weeks. Randomisation was stratified by age (<25 vs ≥25 years) and CIN2 versus CIN3 by computer-generated allocation sequence (block size 4). Funder and site personnel, participants, and pathologists were masked to treatment. The primary efficacy endpoint was regression to CIN1 or normal pathology 36 weeks after the first dose. Per-protocol and modified intention-to-treat analyses were based on patients receiving three doses without protocol violations, and on patients receiving at least one dose, respectively. The safety population included all patients who received at least one dose. The trial is registered at ClinicalTrials.gov (number NCT01304524) and EudraCT (number 2012-001334-33). FINDINGS Between Oct 19, 2011, and July 30, 2013, 167 patients received either VGX-3100 (n=125) or placebo (n=42). In the per-protocol analysis 53 (49·5%) of 107 VGX-3100 recipients and 11 (30·6%) of 36 placebo recipients had histopathological regression (percentage point difference 19·0 [95% CI 1·4-36·6]; p=0·034). In the modified intention-to-treat analysis 55 (48·2%) of 114 VGX-3100 recipients and 12 (30·0%) of 40 placebo recipients had histopathological regression (percentage point difference 18·2 [95% CI 1·3-34·4]; p=0·034). Injection-site reactions occurred in most patients, but only erythema was significantly more common in the VGX-3100 group (98/125, 78·4%) than in the placebo group (24/42, 57·1%; percentage point difference 21·3 [95% CI 5·3-37·8]; p=0·007). INTERPRETATION VGX-3100 is the first therapeutic vaccine to show efficacy against CIN2/3 associated with HPV-16 and HPV-18. VGX-3100 could present a non-surgical therapeutic option for CIN2/3, changing the treatment outlook for this common disease. FUNDING Inovio Pharmaceuticals.


Science Translational Medicine | 2012

Immunotherapy Against HPV16/18 Generates Potent TH1 and Cytotoxic Cellular Immune Responses

Mark L. Bagarazzi; Jian Yan; Matthew P. Morrow; Xuefei Shen; Parker Rl; Jinhee Lee; Giffear M; Panyupa Pankhong; Amir S. Khan; Kate E. Broderick; Feng Lin; Jean D. Boyer; Ruxandra Draghia-Akli; White Cj; Jung-Ok Kim; David B. Weiner; Niranjan Y. Sardesai

CD8+ T cells with cytolytic activity are induced after therapeutic human papillomavirus vaccination in humans. Shocking HPV into Submission Human papillomavirus (HPV) infection is frequently asymptomatic but can lead to the development of cervical cancer in infected women. Current vaccines against HPV are quite effective at preventing infection; however, there is no vaccine to help those already infected. Now, Bagarazzi et al. report that a therapeutic vaccine for HPV can induce an immune response in a phase 1 study. VGX-3100 is a candidate vaccine for the high-risk HPV serotypes 16 and 18. Here, 18 women previously treated for cervical neoplasia—a precursor to cervical cancer—were given the DNA vaccine VGX-3100 by electroporation—where a small localized electric pulse accompanies the injection—in a range of doses. Previous attempts at DNA vaccination have proved less than successful in clinical trials; however, preclinical studies suggest that electroporation may greatly enhance the efficacy of the vaccine. The authors show that the electroporation-delivered VGX-3100 induces a robust HPV-specific immune response in previously infected individuals and that the vaccine is safe and immunogenic. Although efficacy remains to be tested in a larger trial, the enhanced immune response elicited by VGX-3100 may attack HPV-infected cells, potentially inducing cancer regression in individuals already infected with HPV. Despite the development of highly effective prophylactic vaccines against human papillomavirus (HPV) serotypes 16 and 18, prevention of cervical dysplasia and cancer in women infected with high-risk HPV serotypes remains an unmet medical need. We report encouraging phase 1 safety, tolerability, and immunogenicity results for a therapeutic HPV16/18 candidate vaccine, VGX-3100, delivered by in vivo electroporation (EP). Eighteen women previously treated for cervical intraepithelial neoplasia grade 2 or 3 (CIN2/3) received a three-dose (intramuscular) regimen of highly engineered plasmid DNA encoding HPV16 and HPV18 E6/E7 antigens followed by EP in a dose escalation study (0.3, 1, and 3 mg per plasmid). Immunization was well tolerated with reports of mild injection site reactions and no study-related serious or grade 3 and 4 adverse events. No dose-limiting toxicity was noted, and pain was assessed by visual analog scale, with average scores decreasing from 6.2/10 to 1.4 within 10 min. Average peak interferon-γ enzyme-linked immunospot magnitudes were highest in the 3 mg cohort in comparison to the 0.3 and 1 mg cohorts, suggesting a trend toward a dose effect. Flow cytometric analysis revealed the induction of HPV-specific CD8+ T cells that efficiently loaded granzyme B and perforin and exhibited full cytolytic functionality in all cohorts. These data indicate that VGX-3100 is capable of driving robust immune responses to antigens from high-risk HPV serotypes and could contribute to elimination of HPV-infected cells and subsequent regression of the dysplastic process.


Frontiers in Bioscience | 2005

Role of cyclic GMP in gene regulation.

Renate B. Pilz; Kate E. Broderick

Cyclic GMP is produced in response to nitric oxide and natriuretic peptides; cGMP is a key regulator of cell proliferation, differentiation, and apoptosis, and plays an important role in many (patho)physiological processes such as synaptic plasticity, angiogenesis, inflammation, and cardiac hypertrophy. The regulation of gene expression by cGMP has been recognized relatively recently, but cGMP-mediated increases or decreases in the mRNA expression of >60 different genes have been described, and gene expression profiling is just beginning to contribute to the growing list of cGMP-regulated genes. Deletion or over-expression experiments in mice involving components of the cGMP signaling pathway have contributed to our understanding of long-term effects of altered cGMP signaling, including the regulation of gene expression. We will discuss transcriptional and post-transcriptional mechanisms of gene regulation by cGMP, and review specific transcription factors and RNA binding proteins targeted by cGMP. Some of the effects of cGMP on gene expression are indirect, through cGMP modulation of other signaling pathways, e. g. mitogen-activated protein kinase pathways. However, some effects of cGMP can be directly attributed to cGMP regulation of specific transcription factors such as CREB, TFII-I or c-Fos, and are mediated by cGMP-dependent protein kinases. We will discuss specific genes regulated by cGMP in the context of their contribution to particular (patho)physiologic processes regulated by cGMP.


Gene Therapy | 2011

Prototype development and preclinical immunogenicity analysis of a novel minimally invasive electroporation device.

Kate E. Broderick; Xuefei Shen; J Soderholm; Feng Lin; Jay Mccoy; Amir S. Khan; Jian Yan; Matthew P. Morrow; A Patel; Gary P. Kobinger; S Kemmerrer; David B. Weiner; Niranjan Y. Sardesai

The magnitude of the immune response to a DNA vaccine depends on three criteria—the optimized vector design, the use of a suitable adjuvant and the successful delivery and subsequent expression of the plasmid in the target tissue. In vivo electroporation (EP) has proved to be particularly effective in efficiently delivering DNA immunogens to the muscle and the skin, and indeed several devices have entered into human clinical trials. Here, we report on a novel concept of DNA delivery to the dermal tissue using a minimally invasive EP device, which is powered using low-voltage parameters. We show that this prototype device containing a novel 4 × 4-electrode array results in robust and reproducible transfection of dermal tissue and subsequent antigen expression at the injection site. Using DNA encoding for NP and M2e influenza antigens, we further show induction of potent cellular responses in a mouse model as measured by antigen-specific T-cell ELISpot assays. Importantly, 100% of the immunized animals were protected when challenged with VN/1203/04 (H5N1) strain of influenza. We have also extended our findings to a guinea-pig model and demonstrated induction of HI titers greater than 1:40 against a pandemic novel H1N1 virus showing proof of concept efficacy for DNA delivery with the prototype device in a broad spectrum of species and using multiple antigens. Finally, we were able to generate protective HI titers in macaques against the same novel H1N1 strain. Our results suggest that the minimally invasive dermal device may offer a safe, tolerable and efficient method to administer DNA vaccinations in a prophylactic setting, and thus potentially represents an important new option for improved DNA vaccine delivery in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2013

DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge

Vainav Patel; Rashmi Jalah; Viraj Kulkarni; Antonio Valentin; Margherita Rosati; Candido Alicea; Agneta von Gegerfelt; Wensheng Huang; Yongjun Guan; Brandon F. Keele; Julian W. Bess; Michael Piatak; Jeffrey D. Lifson; William T. Williams; Xiaoying Shen; Georgia D. Tomaras; Rama Rao Amara; Harriet L. Robinson; Welkin E. Johnson; Kate E. Broderick; Niranjan Y. Sardesai; David Venzon; Vanessa M. Hirsch; Barbara K. Felber; George N. Pavlakis

We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4+ effector memory, and postchallenge CD8+ transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.


npj Vaccines | 2016

In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine

Karuppiah Muthumani; Bryan D. Griffin; Sangya Agarwal; Sagar Kudchodkar; Emma L. Reuschel; Hyeree Choi; Kimberly A. Kraynyak; Elizabeth K Duperret; Amelia Keaton; Christopher W. Chung; Yinho K Kim; Stephanie A. Booth; Trina Racine; Jian Yan; Matthew P. Morrow; Jingjing Jiang; Brian Lee; Stephanie Ramos; Kate E. Broderick; Charles Reed; Amir S. Khan; Laurent Humeau; Kenneth E. Ugen; Young Kyoung Park; Joel N. Maslow; Niranjan Y. Sardesai; J. Joseph Kim; Gary P. Kobinger; David B. Weiner

Significant concerns have been raised owing to the rapid global spread of infection and disease caused by the mosquito-borne Zika virus (ZIKV). Recent studies suggest that ZIKV can also be transmitted sexually, further increasing the exposure risk for this virus. Associated with this spread is a dramatic increase in cases of microcephaly and additional congenital abnormalities in infants of ZIKV-infected mothers, as well as a rise in the occurrence of Guillain Barre’ syndrome in infected adults. Importantly, there are no licensed therapies or vaccines against ZIKV infection. In this study, we generate and evaluate the in vivo efficacy of a novel, synthetic, DNA vaccine targeting the pre-membrane+envelope proteins (prME) of ZIKV. Following initial in vitro development and evaluation studies of the plasmid construct, mice and non-human primates were immunised with this prME DNA-based immunogen through electroporation-mediated enhanced DNA delivery. Vaccinated animals were found to generate antigen-specific cellular and humoral immunity and neutralisation activity. In mice lacking receptors for interferon (IFN)-α/β (designated IFNAR−/−) immunisation with this DNA vaccine induced, following in vivo viral challenge, 100% protection against infection-associated weight loss or death in addition to preventing viral pathology in brain tissue. In addition, passive transfer of non-human primate anti-ZIKV immune serum protected IFNAR−/− mice against subsequent viral challenge. This study in NHP and in a pathogenic mouse model supports the importance of immune responses targeting prME in ZIKV infection and suggests that additional research on this vaccine approach may have relevance for ZIKV control and disease prevention in humans.


Experimental Biology and Medicine | 2006

Cyanide Detoxification by the Cobalamin Precursor Cobinamide

Kate E. Broderick; Prasanth Potluri; Shunhui Zhuang; Immo E. Scheffler; Vijay S. Sharma; Renate B. Pilz; Gerry R. Boss

Cyanide is a highly toxic agent that inhibits mitochondrial cytochrome-c oxidase, thereby depleting cellular ATP. it contributes to smoke inhalation deaths in fires and could be used as a weapon of mass destruction. Cobalamin (vitamin B12) binds cyanide with a relatively high affinity and is used in Europe to treat smoke inhalation victims. Cobinamide, the penultimate compound in cobalamin biosynthesis, binds cyanide with about 1010 greater affinity than cobalamin, and we found It was several-fold more effective than cobalamin in (i) reversing cyanide inhibition of oxidative phosphorylation in mammalian cells; (ii) rescuing mammalian cells and Drosophila melanogaster from cyanide toxicity; and (iii) reducing cyanide inhibition of Drosophila Malpighian tubule secretion. Cobinamide could be delivered by oral ingestion, inhalation, or injection to Drosophila, and it was as effective when administered up to 5 mins post-cyanide exposure as when given preexposure. We conclude that cobinamide is an effective cyanide detoxifying agent that has potential use as a cyanide antidote, both in smoke inhalation victims and in persons exposed to cyanide used as a weapon of mass destruction.


Human Vaccines & Immunotherapeutics | 2012

IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques

Rashmi Jalah; Vainav Patel; Viraj Kulkarni; Margherita Rosati; Candido Alicea; Brunda Ganneru; Agneta von Gegerfelt; Wensheng Huang; Yongjun Guan; Kate E. Broderick; Niranjan Y. Sardesai; Celia C. LaBranche; David C. Montefiori; George N. Pavlakis; Barbara K. Felber

Intramuscular injection of macaques with an IL-12 expression plasmid (0.1 or 0.4 mg DNA/animal) optimized for high level of expression and delivered using in vivo electroporation, resulted in the detection of systemic IL-12 cytokine in the plasma. Peak levels obtained by day 4–5 post injection were paralleled by a rapid increase of IFN-γ, indicating bioactivity of the IL-12 cytokine. Both plasma IL-12 and IFN-γ levels were reduced to basal levels by day 14, indicating a short presence of elevated levels of the bioactive IL-12. The effect of IL-12 as adjuvant together with an SIVmac239 DNA vaccine was further examined comparing two groups of rhesus macaques vaccinated in the presence or absence of IL-12 DNA. The IL-12 DNA-adjuvanted group developed significantly higher SIV-specific cellular immune responses, including IFN-γ+ Granzyme B+ T cells, demonstrating increased levels of vaccine-induced T cells with cytotoxic potential, and this difference persisted for 6 mo after the last vaccination. Coinjection of IL-12 DNA led to increases in Gag-specific CD4+ and CD4+CD8+ double-positive memory T cell subsets, whereas the Env-specific increases were mainly mediated by the CD8+ and CD4+CD8+ double-positive memory T cell subsets. The IL-12 DNA-adjuvanted vaccine group developed higher binding antibody titers to Gag and mac251 Env, and showed higher and more durable neutralizing antibodies to heterologous SIVsmE660. Therefore, co-delivery of IL-12 DNA with the SIV DNA vaccine enhanced the magnitude and breadth of immune responses in immunized rhesus macaques, and supports the inclusion of IL-12 DNA as vaccine adjuvant.


Journal of Biological Chemistry | 2004

Ectopic expression of bovine type 5 phosphodiesterase confers a renal phenotype in Drosophila

Kate E. Broderick; Laura Kean; Julian A. T. Dow; Nigel J. Pyne; Shireen A. Davies

cGMP signaling regulates epithelial fluid transport by Drosophila Malpighian (renal) tubules. In order to directly evaluate the importance of cGMP-degrading phosphodiesterases (PDEs) in epithelial transport, bovine PDE5 (a bona fide cGMP-PDE), was ectopically expressed in vivo. Transgenic UAS-PDE5 Drosophila were generated, and PDE5 expression was driven in specified tubule cells in vivo by cell-specific GAL4 drivers. Targeted expression was verified by PCR and Western blotting. Immunolocalization of PDE5 in tubule confirmed specificity of expression and demonstrated localization to the apical plasma membrane. GAL4/UAS-PDE5 tubules exhibit increased cG-PDE activity and reduced basal cGMP levels compared with control lines. We show that wild-type and control tubules are sensitive to the PDE5-specific inhibitor sildenafil and that GAL4/UAS-PDE5 tubules display enhanced sensitivity to sildenafil, compared with controls. cGMP content in GAL4/UAS-PDE5 tubules is restored to control levels by treatment with sildenafil. Thus bovine PDE5 retains cGMP-degrading activity and inhibitor sensitivity when expressed in Drosophila. Expression of PDE5 in tubule principal cells results in an epithelial phenotype, reducing rates of basal and cGMP-/Cardioaccelatory peptide2b(CAP2b)-stimulated fluid transport. Furthermore, inhibition of PDE5 activity by sildenafil restores basal and cGMP-stimulated fluid transport rates to control levels. However, corticotrophin releasing factor-like-stimulated transport, which is activated by cAMP signaling, was unaffected, confirming that only cGMP-stimulated signaling events in tubule are compromised by overexpression of PDE5. Successful ectopic expression of a vertebrate cG-PDE in Drosophila has shown that cG-PDE has a critical role in tubule function in vivo and that cG-PDE function is conserved across evolution. The transgene also provides a generic tool for the analysis of cGMP signaling in Drosophila.


Journal of Biological Chemistry | 2013

The p40 Subunit of Interleukin (IL)-12 Promotes Stabilization and Export of the p35 Subunit IMPLICATIONS FOR IMPROVED IL-12 CYTOKINE PRODUCTION

Rashmi Jalah; Margherita Rosati; Brunda Ganneru; Guy R. Pilkington; Antonio Valentin; Viraj Kulkarni; Cristina Bergamaschi; Bhabadeb Chowdhury; Gen-Mu Zhang; Rachel Kelly Beach; Candido Alicea; Kate E. Broderick; Niranjan Y. Sardesai; George N. Pavlakis; Barbara K. Felber

Background: The biosynthesis of IL-12p70 depends on the intracellular interaction of its p35 and p40 subunits. Results: The p40 subunit stabilizes p35 and promotes its secretion. Conclusion: Understanding the regulatory steps of IL-12 biosynthesis led to the generation of optimized IL-12 plasmids. Significance: Availability of expression-optimized IL-12 DNA plasmids is important for practical applications as DNA vaccine adjuvants and in cancer immunotherapy. IL-12 is a 70-kDa heterodimeric cytokine composed of the p35 and p40 subunits. To maximize cytokine production from plasmid DNA, molecular steps controlling IL-12p70 biosynthesis at the posttranscriptional and posttranslational levels were investigated. We show that the combination of RNA/codon-optimized gene sequences and fine-tuning of the relative expression levels of the two subunits within a cell resulted in increased production of the IL-12p70 heterodimer. We found that the p40 subunit plays a critical role in enhancing the stability, intracellular trafficking, and export of the p35 subunit. This posttranslational regulation mediated by the p40 subunit is conserved in mammals. Based on these findings, dual gene expression vectors were generated, producing an optimal ratio of the two subunits, resulting in a ∼1 log increase in human, rhesus, and murine IL-12p70 production compared with vectors expressing the wild type sequences. Such optimized DNA plasmids also produced significantly higher levels of systemic bioactive IL-12 upon in vivo DNA delivery in mice compared with plasmids expressing the wild type sequences. A single therapeutic injection of an optimized murine IL-12 DNA plasmid showed significantly more potent control of tumor development in the B16 melanoma cancer model in mice. Therefore, the improved IL-12p70 DNA vectors have promising potential for in vivo use as molecular vaccine adjuvants and in cancer immunotherapy.

Collaboration


Dive into the Kate E. Broderick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Yan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amir S. Khan

Center for Cell and Gene Therapy

View shared research outputs
Top Co-Authors

Avatar

Laurent Humeau

University of California

View shared research outputs
Top Co-Authors

Avatar

Matthew P. Morrow

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

George N. Pavlakis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Margherita Rosati

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barbara K. Felber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Candido Alicea

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge