Laurent Moret-Bailly
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurent Moret-Bailly.
Crelle's Journal | 2005
Laurent Moret-Bailly
Abstract Let k be a field of characteristic zero, V a smooth, positive-dimensional, quasiprojective variety over k, and Q a nonempty divisor on V. Let K be the function field of V, and A ⊂ K the semilocal ring of Q. We prove the Diophantine undecidability of: (1) A, in all cases; (2) K, when k is real and V has a real point; (3) K, when k is a subfield of a p -adic field, for some odd prime p. To achieve this, we use Denef’s method: from an elliptic curve E over ℚ, without complex multiplication, one constructs a quadratic twist ℰ of E over ℚ(t ), which has Mordell-Weil rank one. Most of the paper is devoted to proving (using a theorem of R. Noot) that one can choose ƒ in K, vanishing at Q, such that the group ℰ(K ) deduced from the field extension ℚ(t ) →̃ ℚ(ƒ ) ↪ K is equal to ℰ(ℚ(t )). Then we mimic the arguments of Denef (for the real case) and of Kim and Roush (for the p -adic case).
Manuscripta Mathematica | 2012
Laurent Moret-Bailly
We extend Greenberg’s strong approximation theorem to schemes of finite presentation over valuation rings with arbitrary value group. As an application, we prove a closed image theorem (in the strong topology on rational points) for proper morphisms of varieties over valued fields.
Algebraic Geometry | 2014
Ofer Gabber; Philippe Gille; Laurent Moret-Bailly
Let K be the field of fractions of a henselian valuation ring A. Assume that the completion b K is a separable extension of K. Let Y be a K-variety, let G be an algebraic group over K, and let f : X! Y be a G-torsor over Y . We consider the induced map X(K)! Y (K), which is continuous for the topologies deduced from the valuation. If I denotes the image of this map, we prove that I is locally closed in Y (K); moreover, the induced surjection X(K)! I is a principal bundle with group G(K) (also topologized by the valuation).
Archive | 1987
Laurent Moret-Bailly
1.1. En 1934, Skolem [5] a etudie la question suivante: si Q∈R[X1,...,Xm] est un polyelme a coefficients dans un anneau R d’entiers algebriques, peut-on trouver des entiers algebriques x1, ... , xm tels que Q(xl,...,xm) soit un entier algebrique inversible ?
Journal of Number Theory | 2003
Laurent Moret-Bailly
Abstract We give criteria for R-equivalence of torsors under finite constant group schemes over a field. In particular, using bitorsors, we obtain a Galois devissage result which formalises and generalises a theorem of Philippe Gille in the case of local fields; for instance, Gilles theorem is shown to extend to higher local fields.
Archive | 2000
Gérard Laumon; Laurent Moret-Bailly
Thereme (6.1). — Soit ℋ un S-champ algebrique. Les conditions (i) et (ii_ ci-dessours sont equivalentes: (i) il existe un entier d ≥ 1, un espace algebrique (resp. un schema, resp. un schema affine) X et un 1-morphisme π: X → ℋ, fini etale de degre d; (ii) ℋ est 1-isomorphe a un S-champ de la forme [X’/G/S], ou X’ est un espace algebrique (resp. un schema, resp. un schema affine) et G un groupe fini operant sur X’.
Archive | 2000
Gérard Laumon; Laurent Moret-Bailly
Theoreme (8.1) — Soit ℋ un S-champ algebrique, et soit Δ : ℋ → ℋ xSℋ le 1-morphisme diagonal. Pour que ℋ soit un S-champ de Deligne-Mumford, il faut et il suffit que Δ soit non ramifie.
Archive | 2000
Gérard Laumon; Laurent Moret-Bailly
Rappelons qu’un groupoide est une categorie dont toutes les fleches sont des isomorphismes.
Archive | 2000
Gérard Laumon; Laurent Moret-Bailly
On fixe un schema de base S. On notera (Aff/S) la categorie des schemas affines munis d’un morphisme de schemas dans S. Remarquer que cette categorie n’a pas en general d’objet final (sauf si S est affine) ni de produits (sauf si S est separe) mais qu’elle admet des produits fibres.
Archive | 2000
Gérard Laumon; Laurent Moret-Bailly
Le thereme suivant, du a Artin ([Ar 6] 6.1), assure que la definition (4.1) des S-champs algebriques (quasi-separes) est essentiellement la plus generale possible.