Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Moret-Bailly is active.

Publication


Featured researches published by Laurent Moret-Bailly.


Crelle's Journal | 2005

Elliptic curves and Hilbert's tenth problem for algebraic function fields over real and p-adic fields

Laurent Moret-Bailly

Abstract Let k be a field of characteristic zero, V  a smooth, positive-dimensional, quasiprojective variety over k, and Q  a nonempty divisor on V. Let K  be the function field of V, and A ⊂ K  the semilocal ring of Q. We prove the Diophantine undecidability of: (1) A, in all cases; (2) K, when k  is real and V   has a real point; (3) K, when k  is a subfield of a p -adic field, for some odd prime p. To achieve this, we use Denef’s method: from an elliptic curve E  over ℚ, without complex multiplication, one constructs a quadratic twist ℰ of E over ℚ(t ), which has Mordell-Weil rank one. Most of the paper is devoted to proving (using a theorem of R. Noot) that one can choose ƒ in K, vanishing at Q, such that the group ℰ(K ) deduced from the field extension ℚ(t ) →̃ ℚ(ƒ ) ↪ K  is equal to ℰ(ℚ(t )). Then we mimic the arguments of Denef (for the real case) and of Kim and Roush (for the p -adic case).


Manuscripta Mathematica | 2012

An extension of Greenberg’s theorem to general valuation rings

Laurent Moret-Bailly

We extend Greenberg’s strong approximation theorem to schemes of finite presentation over valuation rings with arbitrary value group. As an application, we prove a closed image theorem (in the strong topology on rational points) for proper morphisms of varieties over valued fields.


Algebraic Geometry | 2014

Fibrés principaux sur les corps valués henséliens

Ofer Gabber; Philippe Gille; Laurent Moret-Bailly

Let K be the field of fractions of a henselian valuation ring A. Assume that the completion b K is a separable extension of K. Let Y be a K-variety, let G be an algebraic group over K, and let f : X! Y be a G-torsor over Y . We consider the induced map X(K)! Y (K), which is continuous for the topologies deduced from the valuation. If I denotes the image of this map, we prove that I is locally closed in Y (K); moreover, the induced surjection X(K)! I is a principal bundle with group G(K) (also topologized by the valuation).


Archive | 1987

Points Entiers des Variétés Arithmétiques

Laurent Moret-Bailly

1.1. En 1934, Skolem [5] a etudie la question suivante: si Q∈R[X1,...,Xm] est un polyelme a coefficients dans un anneau R d’entiers algebriques, peut-on trouver des entiers algebriques x1, ... , xm tels que Q(xl,...,xm) soit un entier algebrique inversible ?


Journal of Number Theory | 2003

Sur la R-équivalence de torseurs sous un groupe fini

Laurent Moret-Bailly

Abstract We give criteria for R-equivalence of torsors under finite constant group schemes over a field. In particular, using bitorsors, we obtain a Galois devissage result which formalises and generalises a theorem of Philippe Gille in the case of local fields; for instance, Gilles theorem is shown to extend to higher local fields.


Archive | 2000

Quelques résultats de structure locale

Gérard Laumon; Laurent Moret-Bailly

Thereme (6.1). — Soit ℋ un S-champ algebrique. Les conditions (i) et (ii_ ci-dessours sont equivalentes: (i) il existe un entier d ≥ 1, un espace algebrique (resp. un schema, resp. un schema affine) X et un 1-morphisme π: X → ℋ, fini etale de degre d; (ii) ℋ est 1-isomorphe a un S-champ de la forme [X’/G/S], ou X’ est un espace algebrique (resp. un schema, resp. un schema affine) et G un groupe fini operant sur X’.


Archive | 2000

Caractérisation des espaces algébriques et des champs de Deligne-Mumford

Gérard Laumon; Laurent Moret-Bailly

Theoreme (8.1) — Soit ℋ un S-champ algebrique, et soit Δ : ℋ → ℋ xSℋ le 1-morphisme diagonal. Pour que ℋ soit un S-champ de Deligne-Mumford, il faut et il suffit que Δ soit non ramifie.


Archive | 2000

La 2-catégorie des S-groupoïdes

Gérard Laumon; Laurent Moret-Bailly

Rappelons qu’un groupoide est une categorie dont toutes les fleches sont des isomorphismes.


Archive | 2000

La catégorie des S-espaces et sa sous-catégorie strictement pleine des S-espaces algébriques

Gérard Laumon; Laurent Moret-Bailly

On fixe un schema de base S. On notera (Aff/S) la categorie des schemas affines munis d’un morphisme de schemas dans S. Remarquer que cette categorie n’a pas en general d’objet final (sauf si S est affine) ni de produits (sauf si S est separe) mais qu’elle admet des produits fibres.


Archive | 2000

Les critères d’Artin pour qu’un S -champ soit algébrique

Gérard Laumon; Laurent Moret-Bailly

Le thereme suivant, du a Artin ([Ar 6] 6.1), assure que la definition (4.1) des S-champs algebriques (quasi-separes) est essentiellement la plus generale possible.

Collaboration


Dive into the Laurent Moret-Bailly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgios Pappas

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Ted Chinburg

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge