Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Mosoni is active.

Publication


Featured researches published by Laurent Mosoni.


The Journal of Physiology | 2006

Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia

Isabelle Rieu; Michèle Balage; Claire Sornet; Christophe Giraudet; Estelle Pujos; Jean Grizard; Laurent Mosoni; Dominique Dardevet

The present study was designed to assess the effects of dietary leucine supplementation on muscle protein synthesis and whole body protein kinetics in elderly individuals. Twenty healthy male subjects (70 ± 1 years) were studied before and after continuous ingestion of a complete balanced diet supplemented or not with leucine. A primed (3.6 μmol kg−1) constant infusion (0.06 μmol kg−1 min−1) of l‐[1‐13C]phenylalanine was used to determine whole body phenylalanine kinetics as well as fractional synthesis rate (FSR) in the myofibrillar fraction of muscle proteins from vastus lateralis biopsies. Whole body protein kinetics were not affected by leucine supplementation. In contrast, muscle FSR, measured over the 5‐h period of feeding, was significantly greater in the volunteers given the leucine‐supplemented meals compared with the control group (0.083 ± 0.008 versus 0.053 ± 0.009% h−1, respectively, P < 0.05). This effect was due only to increased leucine availability because only plasma free leucine concentration significantly differed between the control and leucine‐supplemented groups. We conclude that leucine supplementation during feeding improves muscle protein synthesis in the elderly independently of an overall increase of other amino acids. Whether increasing leucine intake in old people may limit muscle protein loss during ageing remains to be determined.


Current Opinion in Clinical Nutrition and Metabolic Care | 2009

Skeletal muscle proteolysis in aging

Lydie Combaret; Dominique Dardevet; Daniel Béchet; Daniel Taillandier; Laurent Mosoni; Didier Attaix

Purpose of reviewTo understand age-related changes in proteolysis and apoptosis in skeletal muscle in relation to oxidative stress and mitochondrial alterations. Recent findingsDuring aging, a progressive loss of muscle mass (sarcopenia) has been described in both human and rodents. Sarcopenia is attributable to an imbalance between protein synthesis and degradation or between apoptosis and regeneration processes or both. Major age-dependent alterations in muscle proteolysis are a lack of responsiveness of the ubiquitin–proteasome-dependent proteolytic pathway to anabolic and catabolic stimuli and alterations in the regulation of autophagy. In addition, increased oxidative stress leads to the accumulation of damaged proteins, which are not properly eliminated, aggregate, and in turn impair proteolytic activities. Finally, the mitochondria-associated apoptotic pathway may be activated. These age-induced changes may contribute to sarcopenia and decreased ability of old individuals to recover from stress. SummaryAlterations in proteasome-dependent or lysosomal proteolysis, increased oxidative stress, mitochondrial dysfunction, and apoptosis presumably contribute to the development of sarcopenia.


Critical Care | 2008

Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm

Emmanuel Futier; Jean-Michel Constantin; Lydie Combaret; Laurent Mosoni; Laurence Roszyk; Vincent Sapin; Didier Attaix; Boris Jung; Samir Jaber; Jean-Etienne Bazin

IntroductionControlled mechanical ventilation (CMV) induces profound modifications of diaphragm protein metabolism, including muscle atrophy and severe ventilator-induced diaphragmatic dysfunction. Diaphragmatic modifications could be decreased by spontaneous breathing. We hypothesized that mechanical ventilation in pressure support ventilation (PSV), which preserves diaphragm muscle activity, would limit diaphragmatic protein catabolism.MethodsForty-two adult Sprague-Dawley rats were included in this prospective randomized animal study. After intraperitoneal anesthesia, animals were randomly assigned to the control group or to receive 6 or 18 hours of CMV or PSV. After sacrifice and incubation with 14C-phenylalanine, in vitro proteolysis and protein synthesis were measured on the costal region of the diaphragm. We also measured myofibrillar protein carbonyl levels and the activity of 20S proteasome and tripeptidylpeptidase II.ResultsCompared with control animals, diaphragmatic protein catabolism was significantly increased after 18 hours of CMV (33%, P = 0.0001) but not after 6 hours. CMV also decreased protein synthesis by 50% (P = 0.0012) after 6 hours and by 65% (P < 0.0001) after 18 hours of mechanical ventilation. Both 20S proteasome activity levels were increased by CMV. Compared with CMV, 6 and 18 hours of PSV showed no significant increase in proteolysis. PSV did not significantly increase protein synthesis versus controls. Both CMV and PSV increased protein carbonyl levels after 18 hours of mechanical ventilation from +63% (P < 0.001) and +82% (P < 0.0005), respectively.ConclusionsPSV is efficient at reducing mechanical ventilation-induced proteolysis and inhibition of protein synthesis without modifications in the level of oxidative injury compared with continuous mechanical ventilation. PSV could be an interesting alternative to limit ventilator-induced diaphragmatic dysfunction.


Journal of Nutrition | 2008

Antioxidant Supplementation Restores Defective Leucine Stimulation of Protein Synthesis in Skeletal Muscle from Old Rats

Barbara Marzani; Michèle Balage; Annie Vénien; Thierry Astruc; Isabelle Papet; Dominique Dardevet; Laurent Mosoni

Aging is characterized by a progressive loss of muscle mass that could be partly explained by a defect in the anabolic effect of food intake. We previously reported that this defect resulted from a decrease in the protein synthesis response to leucine in muscles from old rats. Because aging is associated with changes in oxidative status, we hypothesized that reactive oxygen species-induced oxidative damage may be involved in the impairment of the anabolic effect of leucine with age. The present study assessed the effect of antioxidant supplementation on leucine-regulated protein metabolism in muscles from adult and old rats. Four groups of 8- and 20-mo-old male rats were supplemented or not for 7 wk with an antioxidant mixture containing rutin, vitamin E, vitamin A, zinc, and selenium. At the end of supplementation, muscle protein metabolism was examined in vitro using epitrochlearis muscles incubated with increasing leucine concentrations. In old rats, the ability of leucine to stimulate muscle protein synthesis was significantly decreased compared with adults. This defect was reversed when old rats were supplemented with antioxidants. It was not related to increased oxidative damage to 70-kDa ribosomal protein S6 kinase that is involved in amino acid signaling. These effects could be mediated through a reduction in the inflammatory state, which decreased with antioxidant supplementation. Antioxidant supplementation could benefit muscle protein metabolism during aging, but further studies are needed to determine the mechanism involved and to establish if it could be a useful nutritional tool to slow down sarcopenia with longer supplementation.


The Scientific World Journal | 2012

Muscle Wasting and Resistance of Muscle Anabolism: The “Anabolic Threshold Concept” for Adapted Nutritional Strategies during Sarcopenia

Dominique Dardevet; Didier Rémond; Marie-Agnès Peyron; Isabelle Papet; Isabelle Savary-Auzeloux; Laurent Mosoni

Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on muscle protein anabolism. However, on the long term, these nutritional strategies have often failed in improving muscle mass even if given for long periods of time in both humans and rodent models. Muscle mass loss situations have been often correlated to a resistance of muscle protein anabolism to food intake which may be explained by an increase of the anabolic threshold toward the stimulatory effect of amino acids. In this paper, we will emphasize how this anabolic resistance may affect the intensity and the duration of the muscle anabolic response at the postprandial state and how it may explain the negative results obtained on the long term in the prevention of muscle mass. Sarcopenia, the muscle mass loss observed during aging, has been chosen to illustrate this concept but it may be kept in mind that it could be extended to any other catabolic states or recovery situations.


Mechanisms of Ageing and Development | 2005

Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved

Frédéric Capel; V. Rimbert; D. Lioger; A. Diot; P. Rousset; P. Patureau Mirand; Yves Boirie; Béatrice Morio; Laurent Mosoni

Age-related changes in mitochondrial H2O2 release (MHR) could be responsible for an increase in oxidative stress in skeletal muscle and participate in the development of sarcopenia. We compared MHR in vastus lateralis biopsies obtained from young (23.5+/-2.0 year, n=6) and elderly (67.3+/-1.5 year, n=6) healthy sedentary men. Isolated mitochondria were incubated in the presence of glutamate/malate/succinate, with or without rotenone. Muscle fat oxidative capacity, citrate synthase, complex II, complex III, and cytochrome c oxidase activities were also measured. In parallel, we analyzed in gastrocnemius of young male Wistar rats (n=6), the impact of lidocaine (local anesthetic used in humans) on mitochondrial respiration and MHR. In humans, muscle oxidative capacity was preserved with age but muscle MHR was markedly enhanced in elderly subjects compared to young adults (+175%, P<0.05). Rotenone abolished this increase, demonstrating that it was due to a free radical release during reverse electron transfer from complex II towards complex I. Lidocaine can interfere with MHR measurements (intra-muscular injection in rats) but it can be avoided by minimizing contact with muscle (small multiple subcutaneous injections in humans). Physiologic consequences of the observed increase in muscle MHR with aging remain to be determined.


Journal of Nutritional Biochemistry | 2010

Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats.

Michelle Balage; Julien Averous; Didier Rémond; Cécile Bos; Estelle Pujos-Guillot; Isabelle Papet; Laurent Mosoni; Lydie Combaret; Dominique Dardevet

Aging is characterized by a decline in muscle mass that could be explained by a defect in the regulation of postprandial muscle protein metabolism. This study was undertaken to examine a possible link between the development of low-grade inflammation (LGI) in elderly and the resistance of muscle protein synthesis and degradation pathways to food intake. Fifty-five 20-month-old-rats were studied for 5 months; blood was withdrawn once a month to assess plasma fibrinogen and alpha2-macroglobulin. Animals were then separated into two groups at 25 months old according to their inflammation status: a control non-inflamed (NI, n=24) and a low-grade inflamed group (LGI, n=23). The day of the experiment, rats received no food or a meal. Muscle protein synthesis was assessed in vivo using the flooding dose method ([1-(13)C]phenylalanine) and muscle phosphorylation of protein S6 kinase, and protein S6 was measured in gastrocnemius muscle. Muscle proteolysis was assessed in vitro using the epitrochlearis muscle. Postabsorptive muscle protein synthesis and proteolysis were similar in NI and LGI. After food intake, muscle protein synthesis was significantly stimulated in NI but remained unresponsive in LGI. Muscle proteolysis was similar in both groups whatever the inflammation and/or the nutritional status. In conclusion, we showed that development of LGI during aging may be responsible, at least in part, for the defect in muscle protein synthesis stimulation induced by food intake in rats. Our results suggested that the control of LGI development in elderly improve meal effect on muscle protein synthesis and consequently slow down sarcopenia.


Mechanisms of Ageing and Development | 2004

Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats.

Frédéric Capel; Caroline Buffière; Philippe Patureau Mirand; Laurent Mosoni

Mitochondrial free radical (ROS) production could be involved in sarcopenia. Our aim was to measure this production in various muscles during aging. Male Wistar rats aged 4.5 and 24 months were used. H(2)O(2) release and protein carbonyls were evaluated in isolated mitochondria from an oxidative (soleus) and a glycolytic (tibialis anterior) muscle. Total and Mn-superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase (GR) activities were measured in tibialis anterior. In soleus, glutamate/malate supported mitochondrial H(2)O(2) release was lower than in tibialis anterior in young rats, but increased significantly with age. In tibialis anterior, glutamate/malate or succinate supported H(2)O(2) release was unchanged with age. ROS generators were complexes I and III. Mitochondrial carbonyl content remained stable during aging in both muscles but tended to be higher in tibialis anterior than in soleus. Tibialis anterior total SOD (+17%), catalase (+84%), and GPX (-17%) activities varied significantly with age but Mn-SOD was unchanged, suggesting an increase in cytosolic ROS production. In conclusion, the higher life-long H(2)O(2) release observed in tibialis anterior is consistent with the known sensitivity of glycolytic muscles to sarcopenia. The fact that the rate of H(2)O(2) release increases with age in soleus seems to have little impact.


The FASEB Journal | 2006

Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21-month-old rats: a mitochondria-mediated pathway

Aude Zangarelli; Emilie Chanseaume; Béatrice Morio; Corinne Brugère; Laurent Mosoni; Paulette Rousset; Christophe Giraudet; Véronique Patrac; Pierre Gachon; Yves Boirie; Stéphane Walrand

Caloric restriction (CR) delays the onset of age‐related mitochondrial abnormalities but does not prevent the decline in ATP production needed to sustain muscle protein fractional synthesis rate (FSR) and contractile activity. We hypothesized that improving mitochondrial activity and FSR using a CR diet with maintained protein intakes could enhance myofibrillar protein FSR and consequently improve muscle strength in aging rats. Wistar rats (21 months old) were fed either an ad libitum (AL), 40% protein‐energy restricted (PER) or 40% AL‐isonitrogenous energy restricted (ER) diet for 5 months. ATP production, electron transport chain activity, reactive oxygen species (ROS) generation, protein carbonyl content and FSR were determined in both tibialis anterior (TA) and soleus muscle mitochondria. Myosin and actin FSR and grip force were also investigated. The ER diet led to improved mitochondrial activity and ATP production in the TA and soleus muscles in comparison with PER. Furthermore, mitochondrial FSR in the TA was enhanced under the ER diet but diminished under the PER. Mitochondrial protein carbonyl content was decreased by both the ER and PER diets. The ER diet was able to improve myosin and actin FSR and grip force. Therefore, the synergistic effects of CR with maintained protein intake may help to limit the progression of sarcopenia by optimizing the turnover rates and functions of major proteins in skeletal muscle.—Zangarelli, A., Chanseaume, E., Morio, B., Brugère, C., Mosoni, L., Rousset, P., Giraudet, C., Patrac, V., Gachon, P., Boirie, Y., Walrand, S. Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21‐month‐old rats: a mitochondria‐mediated pathway. FASEB J. 20, 2439–2450 (2006)


American Journal of Physiology-endocrinology and Metabolism | 1999

Lower recovery of muscle protein lost during starvation in old rats despite a stimulation of protein synthesis

Laurent Mosoni; T. Malmezat; Marie-Claude Valluy; M.L. Houlier; Didier Attaix; P. Patureau Mirand

Sarcopenia could result from the inability of an older individual to recover muscle lost during catabolic periods. To test this hypothesis, we compared the capacity of 5-day-refed 12- and 24-mo-old rats to recover muscle mass lost after 10 days without food. We measured gastrocnemius and liver protein synthesis with the flooding-dose method and also measured nitrogen balance, 3-methylhistidine excretion, and the gene expression of components of proteolytic pathways in muscle comparing fed, starved, and refed rats at each age. We show that 24-mo-old rats had an altered capacity to recover muscle proteins. Muscle protein synthesis, inhibited during starvation, returned to control values during refeeding in both age groups. The lower recovery in 24-mo-old rats was related to a lack of inhibition of muscle proteolysis during refeeding. The level of gene expression of components of the proteolytic pathways did not account for the variations in muscle proteolysis at both ages. In conclusion, this study highlights the role of muscle proteolysis in the lower recovery of muscle protein mass lost during catabolic periods.

Collaboration


Dive into the Laurent Mosoni's collaboration.

Top Co-Authors

Avatar

Dominique Dardevet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Rémond

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Patureau Mirand

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Papet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eva Gatineau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Yves Boirie

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Carole Migné

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Savary-Auzeloux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean Grizard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M.L. Houlier

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge