Laurent Pangon
Garvan Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurent Pangon.
Journal of Thoracic Oncology | 2011
Christina I. Selinger; Wendy A. Cooper; Sam Al-Sohaily; Dessislava N. Mladenova; Laurent Pangon; Catherine Kennedy; Brian C. McCaughan; Clare Stirzaker; Maija Kohonen-Corish
Introduction: Lung cancer is the leading cause of cancer-related mortality and requires more effective molecular markers of prognosis and therapeutic responsiveness. Special AT-rich binding protein 1 (SATB1) is a global genome organizer that recruits chromatin remodeling proteins to epigenetically regulate hundreds of genes in a tissue-specific manner. Initial studies suggest that SATB1 overexpression is a predictor of poor prognosis in breast cancer, but the prognostic significance of SATB1 expression has not been evaluated in lung cancer. Methods: A cohort of 257 lung cancers was evaluated by immunohistochemistry. Epigenetic silencing of SATB1 was examined in cell lines by 5-Aza 2-deoxycytidine and trichostatin A treatment, and chromatin immunoprecipitation. Results: Significant loss of SATB1 expression was found in squamous preinvasive lesions (p < 0.04) and in non-small cell lung cancers (p < 0.001) compared with matched normal bronchial epithelium. Loss of SATB1 independently predicted poor cancer-specific survival in squamous cell carcinomas (SCCs; hazard ratio: 2.06, 95% confidence interval: 1.2–3.7, p = 0.016). Treatment of lung cancer cell lines with the histone deacetylase inhibitor trichostatin A resulted in up-regulation of SATB1. SATB1 was associated with a decrease in the active chromatin mark acetylated histone H3K9 and an increase in the repressive polycomb mark trimethylated H3K27 in a SCC cell line relative to a normal bronchial epithelial cell line. Conclusions: This is the first study showing that SATB1 expression is lost in early preinvasive squamous lesions and that loss of SATB1 is associated with poor prognosis in lung SCC. We hypothesize that the SATB1 gene is epigenetically silenced through histone modifications.
Diabetes | 2012
Laurence Macia; Ernie Yulyaningsih; Laurent Pangon; Amy D. Nguyen; Shu Lin; Yc Shi; Lei Zhang; Martijn S. Bijker; Shane T. Grey; Fabienne Mackay; Herbert Herzog; Amanda Sainsbury
Recruitment of activated immune cells into white adipose tissue (WAT) is linked to the development of insulin resistance and obesity, but the mechanism behind this is unclear. Here, we demonstrate that Y1 receptor signaling in immune cells controls inflammation and insulin resistance in obesity. Selective deletion of Y1 receptors in the hematopoietic compartment of mice leads to insulin resistance and inflammation in WAT under high fat–fed conditions. This is accompanied by decreased mRNA expression of the anti-inflammatory marker adiponectin in WAT and an increase of the proinflammatory monocyte chemoattractant protein-1 (MCP-1). In vitro, activated Y1-deficient intraperitoneal macrophages display an increased inflammatory response, with exacerbated secretion of MCP-1 and tumor necrosis factor, whereas addition of neuropeptide Y to wild-type macrophages attenuates the release of these cytokines, this effect being blocked by Y1 but not Y2 receptor antagonism. Importantly, treatment of adipocytes with the supernatant of activated Y1-deficient macrophages causes insulin resistance, as demonstrated by decreased insulin-induced phosphorylation of the insulin receptor and Akt as well as decreased expression of insulin receptor substrate 1. Thus, Y1 signaling in hematopoietic-derived cells such as macrophages is critical for the control of inflammation and insulin resistance in obesity.
Histopathology | 2014
Sam Al-Sohaily; Christopher Henderson; Christina I. Selinger; Laurent Pangon; Eva Segelov; Maija Kohonen-Corish; Janindra Warusavitarne
Special AT‐rich sequence‐binding protein 1 (SATB1) is a cell type‐specific matrix attachment region binding protein, functioning as a global genome organizer. This study aims to investigate the expression pattern and the prognostic value of SATB1 in colorectal cancer.
Cell Communication and Signaling | 2013
Dessislava N. Mladenova; Laurent Pangon; Nicola Currey; Irvin Ng; Elizabeth A. Musgrove; Shane T. Grey; Maija Kohonen-Corish
BackgroundThe non-steroidal anti-inflammatory drug (NSAID) sulindac has shown efficacy in preventing colorectal cancer. This potent anti-tumorigenic effect is mediated through multiple cellular pathways but is also accompanied by gastrointestinal side effects, such as colon inflammation. We have recently shown that sulindac can cause up-regulation of pro-inflammatory factors in the mouse colon mucosa. The aim of this study was to determine the signaling pathways that mediate the transcriptional activation of pro-inflammatory cytokines in colon cancer epithelial cells treated with sulindac sulfide.ResultsWe found that sulindac sulfide increased NF-κB signaling in HCT-15, HCT116, SW480 and SW620 cells, although the level of induction varied between cell lines. The drug caused a decrease in IκBα levels and an increase of p65(RelA) binding to the NF-κB DNA response element. It induced expression of IL-8, ICAM1 and A20, which was inhibited by the NF-κB inhibitor PDTC. Sulindac sulfide also induced activation of the AP-1 transcription factor, which co-operated with NF-κB in up-regulating IL-8. Up-regulation of NF-κB genes was most prominent in conditions where only a subset of cells was undergoing apoptosis. In TNFα stimulated conditions the drug treatment inhibited phosphorylation on IκBα (Ser 32) which is consistent with previous studies and indicates that sulindac sulfide can inhibit TNFα-induced NF-κB activation. Sulindac-induced upregulation of NF-κB target genes occurred early in the proximal colon of mice given a diet containing sulindac for one week.ConclusionsThis study shows for the first time that sulindac sulfide can induce pro-inflammatory NF-κB and AP-1 signaling as well as apoptosis in the same experimental conditions. Therefore, these results provide insights into the effect of sulindac on pro-inflammatory signaling pathways, as well as contribute to a better understanding of the mechanism of sulindac-induced gastrointestinal side effects.
Biochimica et Biophysica Acta | 2012
Laurent Pangon; Christa Van Kralingen; Melissa Abas; Roger J. Daly; Elizabeth A. Musgrove; Maija Kohonen-Corish
In this study, we describe a new post-translational modification at position -1 of the PDZ-binding motif in the mutated in colorectal cancer (MCC) protein and its role in lamellipodia formation. Serine 828 at position -1 of this motif is phosphorylated, which is predicted to increase MCC binding affinity with the polarity protein Scrib. We show that endogenous MCC localizes at the active migratory edge of cells, where it interacts with Scrib and the non-muscle motor protein Myosin-IIB. Expression of MCC harboring a phosphomimetic mutation MCC-S828D strongly impaired lamellipodia formation and resulted in accumulation of Myosin-IIB in the membrane cortex fraction. We propose that MCC regulates lamellipodia formation by binding to Scrib and its downstream partner Myosin-IIB in a multiprotein complex. Importantly, we propose that the function of this complex is under the regulation of a newly described phosphorylation of the PDZ-binding motif at position -1.
Genes & Cancer | 2010
Laurent Pangon; Nicholas D. Sigglekow; Mark Larance; Sam Al-Sohaily; Dessislava N. Mladenova; Christina I. Selinger; Elizabeth A. Musgrove; Maija Kohonen-Corish
MCC is a potential tumor suppressor gene, which is silenced by promoter hypermethylation in a subset of colorectal cancers. However, its functions have remained poorly understood. In the present study, we describe a novel function of MCC in the DNA damage response. Several novel phosphorylation sites were identified by mass spectrometry, including 2 highly conserved ATM/ATR consensus sites at serine 118 and serine 120. In addition, exposure to ultraviolet radiation (UV), but not phleomycin, caused PI3K-dependent phosphorylation of MCC and its nuclear localization. Re-expression of MCC in HCT15 colorectal cancer cells led to a G2/M arrest, and MCC knockdown impaired the induction of a G2/M arrest following UV radiation. Finally, mutation of S118/120 to alanine did not affect MCC nuclear shuttling following UV but did impair MCC G2/M checkpoint activity. Thus, these results suggest that MCC is a novel target of the DNA damage checkpoint and that MCC is required for the complete cell cycle arrest in the G2/M phase in response to UV.
International Journal of Cancer | 2015
Laurent Pangon; Dessislava N. Mladenova; Lauren Watkins; Christa Van Kralingen; Nicola Currey; Sam Al-Sohaily; Patrick Lecine; Jean-Paul Borg; Maija Kohonen-Corish
The mutated in colorectal cancer (MCC) is a multifunctional gene showing loss of expression in colorectal and liver cancers. MCC mutations can drive colon carcinogenesis in the mouse and in vitro experiments suggest that loss of MCC function promotes cancer through several important cellular pathways. In particular, the MCC protein is known to regulate beta‐catenin (β‐cat) signaling, but the mechanism is poorly understood. Here we show that the β‐cat repressor function of MCC is strongly impaired by the presence of a disease‐associated mutation. We also identify deleted in breast cancer 1 (DBC1) as a new MCC interacting partner and regulator of β‐cat signaling. RNA interference experiments show that DBC1 promotes β‐cat transcriptional activity and that the presence of DBC1 is required for MCC‐mediated β‐cat repression. In contrast to all other DBC1 interacting partners, MCC does not interact through the DBC1 Leucine Zipper domain but with a glutamic‐acid rich region located between the Nudix and EF‐hand domains. Furthermore, MCC overexpression relocalizes DBC1 from the nucleus to the cytoplasm and reduces β‐cat K49 acetylation. Treatment of cells with the SIRT1 inhibitor Nicotinamide reverses MCC‐induced deacetylation of β‐cat K49. These data suggest that the cytoplasmic MCC–DBC1 interaction sequesters DBC1 away from the nucleus, thereby removing a brake on DBC1 nuclear targets, such as SIRT1. This study provides new mechanistic insights into the DBC1–MCC axis as a new APC independent β‐cat inhibitory pathway.
Disease Models & Mechanisms | 2015
Dessislava N. Mladenova; Jane E. Dahlstrom; Phuong N. Tran; Fahad Benthani; Elaine G. Bean; Irvin Ng; Laurent Pangon; Nicola Currey; Maija Kohonen-Corish
ABSTRACT Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies. However, the role of HIF1α is still poorly understood in chronic inflammation that predisposes the colon to carcinogenesis. We have previously reported that the transcription of HIF1α is upregulated and that the protein is stabilised in inflammatory lesions that are caused by the non-steroidal anti-inflammatory drug (NSAID) sulindac in the mouse proximal colon. Here, we exploited this side effect of long-term sulindac administration to analyse the role of HIF1α in colon inflammation using mice with a Villin-Cre-induced deletion of Hif1α exon 2 in the intestinal epithelium (Hif1αΔIEC). We also analysed the effect of sulindac sulfide on the aryl hydrocarbon receptor (AHR) pathway in vitro in colon cancer cells. Most sulindac-treated mice developed visible lesions, resembling the appearance of flat adenomas in the human colon, surrounded by macroscopically normal mucosa. Hif1αΔIEC mice still developed lesions but they were smaller than in the Hif1α-floxed siblings (Hif1αF/F). Microscopically, Hif1αΔIEC mice had significantly less severe colon inflammation than Hif1αF/F mice. Molecular analysis showed reduced MIF expression and increased E-cadherin mRNA expression in the colon of sulindac-treated Hif1αΔIEC mice. However, immunohistochemistry analysis revealed a defect of E-cadherin protein expression in sulindac-treated Hif1αΔIEC mice. Sulindac sulfide treatment in vitro upregulated Hif1α, c-JUN and IL8 expression through the AHR pathway. Taken together, HIF1α expression augments inflammation in the proximal colon of sulindac-treated mice, and AHR activation by sulindac might lead to the reduction of E-cadherin protein levels through the mitogen-activated protein kinase (MAPK) pathway. Summary: HIF1α deficiency reduces inflammation in the mouse proximal colon but is associated with defective E-cadherin expression in colon epithelial cells when mice lacking intestinal epithelium expression of Hif1α are challenged with sulindac.
Oncogene | 2018
Fahad Benthani; David Herrmann; Phuong N. Tran; Laurent Pangon; Morghan C. Lucas; Amr H. Allam; Nicola Currey; Sam Al-Sohaily; Marc Giry-Laterriere; Janindra Warusavitarne; Paul Timpson; Maija Kohonen-Corish
E-cadherin and β-catenin are key proteins that are essential in the formation of the epithelial cell layer in the colon but their regulatory pathways that are disrupted in cancer metastasis are not completely understood. Mutated in colorectal cancer (MCC) is a tumour suppressor gene that is silenced by promoter methylation in colorectal cancer and particularly in patients with increased lymph node metastasis. Here, we show that MCC methylation is found in 45% of colon and 24% of rectal cancers and is associated with proximal colon, poorly differentiated, circumferential and mucinous tumours as well as increasing T stage and larger tumour size. Knockdown of MCC in HCT116 colon cancer cells caused a reduction in E-cadherin protein level, which is a hallmark of epithelial–mesenchymal transition in cancer, and consequently diminished the E-cadherin/β-catenin complex. MCC knockdown disrupted cell–cell adhesive strength and integrity in the dispase and transepithelial electrical resistance assays, enhanced hepatocyte growth factor-induced cell scatter and increased tumour cell invasiveness in an organotypic assay. The Src/Abl inhibitor dasatinib, a candidate anti-invasive drug, abrogated the invasive properties induced by MCC deficiency. Mechanistically, we establish that MCC interacts with the E-cadherin/β-catenin complex. These data provide a significant advance in the current understanding of cell–cell adhesion in colon cancer cells.
International Journal of Molecular Sciences | 2015
Fahad Benthani; Phuong N. Tran; Nicola Currey; Irvin Ng; Marc Giry-Laterriere; Louise Carey; Maija Kohonen-Corish; Laurent Pangon
Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC) protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.