Nicola Currey
Garvan Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola Currey.
British Journal of Cancer | 2008
T. J. Seng; Nicola Currey; Wendy A. Cooper; Cheok Soon Lee; Charles Chan; Lisa G. Horvath; Robert L. Sutherland; Catherine Kennedy; Brian C. McCaughan; Maija Kohonen-Corish
The significance of chromosome 3p gene alterations in lung cancer is poorly understood. This study set out to investigate promoter methylation in the deleted in lung and oesophageal cancer 1 (DLEC1), MLH1 and other 3p genes in 239 non-small cell lung carcinomas (NSCLC). DLEC1 was methylated in 38.7%, MLH1 in 35.7%, RARβ in 51.7%, RASSF1A in 32.4% and BLU in 35.3% of tumours. Any two of the gene alterations were associated with each other except RARβ. DLEC1 methylation was an independent marker of poor survival in the whole cohort (P=0.025) and in squamous cell carcinoma (P=0.041). MLH1 methylation was also prognostic, particularly in large cell cancer (P=0.006). Concordant methylation of DLEC1/MLH1 was the strongest independent indicator of poor prognosis in the whole cohort (P=0.009). However, microsatellite instability and loss of MLH1 expression was rare, suggesting that MLH1 promoter methylation does not usually lead to gene silencing in lung cancer. This is the first study describing the prognostic value of DLEC1 and MLH1 methylation in NSCLC. The concordant methylation is possibly a consequence of a long-range epigenetic effect in this region of chromosome 3p, which has recently been described in other cancers.
Science Translational Medicine | 2017
Claire Vennin; Venessa T. Chin; Sean C. Warren; Morghan C. Lucas; David Herrmann; Astrid Magenau; Pauline Mélénec; Stacey N. Walters; Gonzalo del Monte-Nieto; James R.W. Conway; Max Nobis; Amr H. Allam; Rachael A. McCloy; Nicola Currey; Mark Pinese; Alice Boulghourjian; Anaiis Zaratzian; Arne A. S. Adam; Celine Heu; Adnan Nagrial; Angela Chou; Angela Steinmann; Alison Drury; Danielle Froio; Marc Giry-Laterriere; Nathanial L. E. Harris; Tri Giang Phan; Rohit Jain; Wolfgang Weninger; Ewan J. McGhee
Fine-tuned manipulation of tumor tension and vasculature enhances response to chemotherapy and impairs metastatic spread in pancreatic cancer. ROCK-ing pancreatic cancer to the core Pancreatic cancer, one of the most deadly and difficult-to-treat tumor types in patients, usually has a dense stroma that can be difficult for drugs to penetrate. Stromal characteristics can also affect multiple other aspects of tumor biology, including metastatic spread, vascular supply, and immune response. Vennin et al. used Fasudil, a drug that inhibits a protein called ROCK and is already used for some conditions in people, to demonstrate the feasibility including short-term tumor stroma remodeling as part of cancer treatment. In genetically engineered and patient-derived mouse models of pancreatic cancer, priming with Fasudil disrupted the tumors’ extracellular matrix and improved the effectiveness of subsequent treatment with standard-of-care chemotherapy for this disease. The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.
International Journal of Cancer | 2014
Maija Kohonen-Corish; Jason Tseung; Charles Chan; Nicola Currey; Owen F. Dent; Stephen Clarke; Leslie Bokey; P. H. Chapuis
Colonic and rectal cancers differ in their clinicopathologic features and treatment strategies. Molecular markers such as gene methylation, microsatellite instability and KRAS mutations, are becoming increasingly important in guiding treatment decisions in colorectal cancer. However, their association with clinicopathologic variables and utility in the management of rectal cancer is still poorly understood. We analyzed CDKN2A gene methylation, CpG island methylator phenotype (CIMP), microsatellite instability and KRAS/BRAF mutations in a cohort of 381 rectal cancers with extensive clinical follow‐up data. BRAF mutations (2%), CIMP‐high (4%) and microsatellite instability‐high (2%) were rare, whereas KRAS mutations (39%), CDKN2A methylation (20%) and CIMP‐low (25%) were more common. Only CDKN2A methylation and KRAS mutations showed an association with poor overall survival but these did not remain significant when analyzed with other clinicopathologic factors. In contrast, this prognostic effect was strengthened by the joint presence of CDKN2A methylation and KRAS mutations, which independently predicted recurrence of cancer and was associated with poor overall and cancer‐specific survival. This study has identified a subgroup of more aggressive rectal cancers that may arise through the KRAS‐p16 pathway. It has been previously shown that an interaction of p16 deficiency and oncogenic KRAS promotes carcinogenesis in the mouse and is characterized by loss of oncogene‐induced senescence. These findings may provide avenues for the discovery of new treatments in rectal cancer.
Gut | 2011
Dessislava N. Mladenova; Joseph J. Daniel; Jane E. Dahlstrom; Elaine E Bean; Ruta Gupta; Russell Pickford; Nicola Currey; Elizabeth A. Musgrove; Maija Kohonen-Corish
Background and aims The non-steroidal anti-inflammatory drug sulindac is an effective chemopreventive agent in sporadic colorectal cancer but its potential benefit in mismatch repair deficient cancers remains to be defined. We wanted to determine whether genetic defects that are relevant for colorectal cancer, such as Msh2 or p53 deficiency, would influence the efficiency of sulindac chemoprevention or increase the side effects. Methods Msh2 or p53 deficient and wild-type mice received feed containing 160–320 ppm sulindac for up to 25 weeks with or without a concurrent treatment with the carcinogen azoxymethane. Colon tissue was analysed by histopathology and molecular biology methods. Results We show that sulindac prevented azoxymethane-induced distal colon tumours in all mice. In the proximal colon, however, sulindac induced new inflammatory lesions on the mucosal folds, which further developed into adenocarcinoma in up to 18–25% of the p53 or Msh2 deficient mice but rarely in wild-type mice. This region in the proximal colon was characterised by a distinct profile of pro- and anti-inflammatory factors, which were modulated by the sulindac diet, including upregulation of hypoxia inducible factor 1α and macrophage inflammatory protein 2. Conclusions These data show that the sulindac diet promotes carcinogenesis in the mouse proximal colon possibly through chronic inflammation. Sulindac has both beneficial and harmful effects in vivo, which are associated with different microenvironments within the colon of experimental mice. Deficiency for the Msh2 or p53 tumour suppressor genes increases the harmful side effects of long-term sulindac treatment in the mouse colon.
Cell Communication and Signaling | 2013
Dessislava N. Mladenova; Laurent Pangon; Nicola Currey; Irvin Ng; Elizabeth A. Musgrove; Shane T. Grey; Maija Kohonen-Corish
BackgroundThe non-steroidal anti-inflammatory drug (NSAID) sulindac has shown efficacy in preventing colorectal cancer. This potent anti-tumorigenic effect is mediated through multiple cellular pathways but is also accompanied by gastrointestinal side effects, such as colon inflammation. We have recently shown that sulindac can cause up-regulation of pro-inflammatory factors in the mouse colon mucosa. The aim of this study was to determine the signaling pathways that mediate the transcriptional activation of pro-inflammatory cytokines in colon cancer epithelial cells treated with sulindac sulfide.ResultsWe found that sulindac sulfide increased NF-κB signaling in HCT-15, HCT116, SW480 and SW620 cells, although the level of induction varied between cell lines. The drug caused a decrease in IκBα levels and an increase of p65(RelA) binding to the NF-κB DNA response element. It induced expression of IL-8, ICAM1 and A20, which was inhibited by the NF-κB inhibitor PDTC. Sulindac sulfide also induced activation of the AP-1 transcription factor, which co-operated with NF-κB in up-regulating IL-8. Up-regulation of NF-κB genes was most prominent in conditions where only a subset of cells was undergoing apoptosis. In TNFα stimulated conditions the drug treatment inhibited phosphorylation on IκBα (Ser 32) which is consistent with previous studies and indicates that sulindac sulfide can inhibit TNFα-induced NF-κB activation. Sulindac-induced upregulation of NF-κB target genes occurred early in the proximal colon of mice given a diet containing sulindac for one week.ConclusionsThis study shows for the first time that sulindac sulfide can induce pro-inflammatory NF-κB and AP-1 signaling as well as apoptosis in the same experimental conditions. Therefore, these results provide insights into the effect of sulindac on pro-inflammatory signaling pathways, as well as contribute to a better understanding of the mechanism of sulindac-induced gastrointestinal side effects.
International Journal of Cancer | 2015
Laurent Pangon; Dessislava N. Mladenova; Lauren Watkins; Christa Van Kralingen; Nicola Currey; Sam Al-Sohaily; Patrick Lecine; Jean-Paul Borg; Maija Kohonen-Corish
The mutated in colorectal cancer (MCC) is a multifunctional gene showing loss of expression in colorectal and liver cancers. MCC mutations can drive colon carcinogenesis in the mouse and in vitro experiments suggest that loss of MCC function promotes cancer through several important cellular pathways. In particular, the MCC protein is known to regulate beta‐catenin (β‐cat) signaling, but the mechanism is poorly understood. Here we show that the β‐cat repressor function of MCC is strongly impaired by the presence of a disease‐associated mutation. We also identify deleted in breast cancer 1 (DBC1) as a new MCC interacting partner and regulator of β‐cat signaling. RNA interference experiments show that DBC1 promotes β‐cat transcriptional activity and that the presence of DBC1 is required for MCC‐mediated β‐cat repression. In contrast to all other DBC1 interacting partners, MCC does not interact through the DBC1 Leucine Zipper domain but with a glutamic‐acid rich region located between the Nudix and EF‐hand domains. Furthermore, MCC overexpression relocalizes DBC1 from the nucleus to the cytoplasm and reduces β‐cat K49 acetylation. Treatment of cells with the SIRT1 inhibitor Nicotinamide reverses MCC‐induced deacetylation of β‐cat K49. These data suggest that the cytoplasmic MCC–DBC1 interaction sequesters DBC1 away from the nucleus, thereby removing a brake on DBC1 nuclear targets, such as SIRT1. This study provides new mechanistic insights into the DBC1–MCC axis as a new APC independent β‐cat inhibitory pathway.
Oncogene | 2016
L Pangon; Irvin Ng; Marc Giry-Laterriere; Nicola Currey; A Morgan; F Benthani; Phuong N. Tran; Sam Al-Sohaily; Eva Segelov; Benjamin L. Parker; Mark J. Cowley; D C Wright; L.St Heaps; L Carey; I Rooman; Maija Kohonen-Corish
The loss of β-catenin inhibitory components is a well-established mechanism of carcinogenesis but β-catenin hyperactivity can also be enhanced through its coactivators. Here we first interrogated a highly validated genomic screen and the largest repository of cancer genomics data and identified JRK as a potential new oncogene and therapeutic target of the β-catenin pathway. We proceeded to validate the oncogenic role of JRK in colon cancer cells and primary tumors. Consistent with a β-catenin activator function, depletion of JRK in several cancer cell lines repressed β-catenin transcriptional activity and reduced cell proliferation. Importantly, JRK expression was aberrantly elevated in 21% of colorectal cancers, 15% of breast and ovarian cancers and was associated with increased expression of β-catenin target genes and increased cell proliferation. This study shows that JRK is required for β-catenin hyperactivity regardless of the adenomatous polyposis coli/β-catenin mutation status and targeting JRK presents new opportunities for therapeutic intervention in cancer.
Disease Models & Mechanisms | 2015
Dessislava N. Mladenova; Jane E. Dahlstrom; Phuong N. Tran; Fahad Benthani; Elaine G. Bean; Irvin Ng; Laurent Pangon; Nicola Currey; Maija Kohonen-Corish
ABSTRACT Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies. However, the role of HIF1α is still poorly understood in chronic inflammation that predisposes the colon to carcinogenesis. We have previously reported that the transcription of HIF1α is upregulated and that the protein is stabilised in inflammatory lesions that are caused by the non-steroidal anti-inflammatory drug (NSAID) sulindac in the mouse proximal colon. Here, we exploited this side effect of long-term sulindac administration to analyse the role of HIF1α in colon inflammation using mice with a Villin-Cre-induced deletion of Hif1α exon 2 in the intestinal epithelium (Hif1αΔIEC). We also analysed the effect of sulindac sulfide on the aryl hydrocarbon receptor (AHR) pathway in vitro in colon cancer cells. Most sulindac-treated mice developed visible lesions, resembling the appearance of flat adenomas in the human colon, surrounded by macroscopically normal mucosa. Hif1αΔIEC mice still developed lesions but they were smaller than in the Hif1α-floxed siblings (Hif1αF/F). Microscopically, Hif1αΔIEC mice had significantly less severe colon inflammation than Hif1αF/F mice. Molecular analysis showed reduced MIF expression and increased E-cadherin mRNA expression in the colon of sulindac-treated Hif1αΔIEC mice. However, immunohistochemistry analysis revealed a defect of E-cadherin protein expression in sulindac-treated Hif1αΔIEC mice. Sulindac sulfide treatment in vitro upregulated Hif1α, c-JUN and IL8 expression through the AHR pathway. Taken together, HIF1α expression augments inflammation in the proximal colon of sulindac-treated mice, and AHR activation by sulindac might lead to the reduction of E-cadherin protein levels through the mitogen-activated protein kinase (MAPK) pathway. Summary: HIF1α deficiency reduces inflammation in the mouse proximal colon but is associated with defective E-cadherin expression in colon epithelial cells when mice lacking intestinal epithelium expression of Hif1α are challenged with sulindac.
Oncogene | 2018
Fahad Benthani; David Herrmann; Phuong N. Tran; Laurent Pangon; Morghan C. Lucas; Amr H. Allam; Nicola Currey; Sam Al-Sohaily; Marc Giry-Laterriere; Janindra Warusavitarne; Paul Timpson; Maija Kohonen-Corish
E-cadherin and β-catenin are key proteins that are essential in the formation of the epithelial cell layer in the colon but their regulatory pathways that are disrupted in cancer metastasis are not completely understood. Mutated in colorectal cancer (MCC) is a tumour suppressor gene that is silenced by promoter methylation in colorectal cancer and particularly in patients with increased lymph node metastasis. Here, we show that MCC methylation is found in 45% of colon and 24% of rectal cancers and is associated with proximal colon, poorly differentiated, circumferential and mucinous tumours as well as increasing T stage and larger tumour size. Knockdown of MCC in HCT116 colon cancer cells caused a reduction in E-cadherin protein level, which is a hallmark of epithelial–mesenchymal transition in cancer, and consequently diminished the E-cadherin/β-catenin complex. MCC knockdown disrupted cell–cell adhesive strength and integrity in the dispase and transepithelial electrical resistance assays, enhanced hepatocyte growth factor-induced cell scatter and increased tumour cell invasiveness in an organotypic assay. The Src/Abl inhibitor dasatinib, a candidate anti-invasive drug, abrogated the invasive properties induced by MCC deficiency. Mechanistically, we establish that MCC interacts with the E-cadherin/β-catenin complex. These data provide a significant advance in the current understanding of cell–cell adhesion in colon cancer cells.
International Journal of Molecular Sciences | 2015
Fahad Benthani; Phuong N. Tran; Nicola Currey; Irvin Ng; Marc Giry-Laterriere; Louise Carey; Maija Kohonen-Corish; Laurent Pangon
Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC) protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.