Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Salphati is active.

Publication


Featured researches published by Laurent Salphati.


Journal of Medicinal Chemistry | 2008

The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer

Adrian Folkes; Khatereh Ahmadi; Wendy K. Alderton; Sonia Alix; Stewart Baker; Gary Box; Irina Chuckowree; Paul A. Clarke; Paul Depledge; Suzanne A. Eccles; Lori S. Friedman; Angela Hayes; Timothy C. Hancox; Arumugam Kugendradas; Letitia Lensun; Pauline Moore; Alan G. Olivero; Jodie Pang; Sonal Patel; Giles Pergl-Wilson; Florence I. Raynaud; Anthony Robson; Nahid Saghir; Laurent Salphati; Sukhjit Sohal; Mark Ultsch; Melanie Valenti; Heidi J.A. Wallweber; Nan Chi Wan; Christian Wiesmann

Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.


Advanced Drug Delivery Reviews | 1996

Active secretion and enterocytic drug metabolism barriers to drug absorption

Vincent J. Wacher; Laurent Salphati; Leslie Z. Benet

Intestinal phase I metabolism and active extrusion of absorbed drug have only recently been recognized as major determinants of oral drug bioavailability. Both CYP3A4, the major phase I drug metabolizing enzyme in humans, and the multidrug efflux pump, P-glycoprotein (P-gp), are present at high levels in the villus enterocytes of the small intestine, the primary site of absorption for orally administered drugs. Moreover, these proteins are induced by many of the same compounds and demonstrate a broad overlap in substrate and inhibitor specificities, suggesting that they act as a concerted barrier to drug absorption. Clinical studies have demonstrated that inhibition of CYP3A4-mediated intestinal metabolism can significantly improve the oral bioavailability of a wide range of drugs. Intestinal P-gp is a major route of elimination for both orally and intravenously administered anticancer drugs in animal models, and experiements with the Caco-2 cell line have provided strong evidence that inhibition of intestinal P-gp is another means by which oral drug bioavailability could be enhanced.


Bioorganic & Medicinal Chemistry Letters | 2009

GDC―0449―A potent inhibitor of the hedgehog pathway

Kirk Robarge; Shirley A. Brunton; Georgette Castanedo; Yong Cui; Michael S. Dina; Richard Goldsmith; Stephen E. Gould; Oivin Guichert; Janet Gunzner; Jason S. Halladay; Wei Jia; Cyrus Khojasteh; Michael F. T. Koehler; Karen Kotkow; Hank La; Rebecca L. LaLonde; Kevin Lau; Leslie Lee; Derek Marshall; James C. Marsters; Lesley J. Murray; Changgeng Qian; Lee L. Rubin; Laurent Salphati; Mark S. Stanley; John H.A. Stibbard; Daniel P. Sutherlin; Savita Ubhayaker; Shumei Wang; Susan Wong

SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.


Advanced Drug Delivery Reviews | 2001

Active secretion and enterocytic drug metabolism barriers to drug absorption1PII of original article: S0169-409X(96)003304. The article was originally published in Advanced Drug Delivery Reviews 20 (1996) 99–112.1

Vincent J. Wacher; Laurent Salphati; Leslie Z. Benet

Intestinal phase I metabolism and active extrusion of absorbed drug have only recently been recognized as major determinants of oral drug bioavailability. Both CYP3A4, the major phase I drug metabolizing enzyme in humans, and the multidrug efflux pump, P-glycoprotein (P-gp), are present at high levels in the villus enterocytes of the small intestine, the primary site of absorption for orally administered drugs. Moreover, these proteins are induced by many of the same compounds and demonstrate a broad overlap in substrate and inhibitor specificities, suggesting that they act as a concerted barrier to drug absorption. Clinical studies have demonstrated that inhibition of CYP3A4-mediated intestinal metabolism can significantly improve the oral bioavailability of a wide range of drugs. Intestinal P-gp is a major route of elimination for both orally and intravenously administered anticancer drugs in animal models, and experiments with the Caco-2 cell line have provided strong evidence that inhibition of intestinal P-gp is another means by which oral drug bioavailability could be enhanced.


Molecular Cancer Therapeutics | 2011

GDC-0980 Is a Novel Class I PI3K/mTOR Kinase Inhibitor with Robust Activity in Cancer Models Driven by the PI3K Pathway

Jeffrey Wallin; Kyle A. Edgar; Jane Guan; Megan Berry; Wei Wei Prior; Leslie Lee; John D. Lesnick; Cristina Lewis; Jim Nonomiya; Jodie Pang; Laurent Salphati; Alan G. Olivero; Daniel P. Sutherlin; Carol O'Brien; Jill M. Spoerke; Sonal Patel; Letitia Lensun; Robert Kassees; Leanne Ross; Mark R. Lackner; Deepak Sampath; Marcia Belvin; Lori Friedman

Alterations of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway occur broadly in cancer via multiple mechanisms including mutation of the PIK3CA gene, loss or mutation of phosphatase and tensin homolog (PTEN), and deregulation of mammalian target of rapamycin (mTOR) complexes. The dysregulation of this pathway has been implicated in tumor initiation, cell growth and survival, invasion and angiogenesis, thus, PI3K and mTOR are promising therapeutic targets for cancer. We discovered GDC-0980, a selective, potent, orally bioavailable inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2) with excellent pharmacokinetic and pharmaceutical properties. GDC-0980 potently inhibits signal transduction downstream of both PI3K and mTOR, as measured by pharmacodynamic (PD) biomarkers, thereby acting upon two key pathway nodes to produce the strongest attainable inhibition of signaling in the pathway. Correspondingly, GDC-0980 was potent across a broad panel of cancer cell lines, with the greatest potency in breast, prostate, and lung cancers and less activity in melanoma and pancreatic cancers, consistent with KRAS and BRAF acting as resistance markers. Treatment of cancer cell lines with GDC-0980 resulted in G1 cell-cycle arrest, and in contrast to mTOR inhibitors, GDC-0980 induced apoptosis in certain cancer cell lines, including those with direct pathway activation via PI3K and PTEN. Low doses of GDC-0980 potently inhibited tumor growth in xenograft models including those with activated PI3K, loss of LKB1 or PTEN, and elicited an exposure-related decrease in PD biomarkers. These preclinical data show that GDC-0980 is a potent and effective dual PI3K/mTOR inhibitor with promise for the clinic. Mol Cancer Ther; 10(12); 2426–36. ©2011 AACR.


Biochemical Pharmacology | 1998

Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers☆

Laurent Salphati; Leslie Z. Benet

A strong overlap between P-glycoprotein (Pgp) and cytochrome P450 3A (CYP3A) substrates and modulators has been reported. To test the hypothesis that CYP3A and Pgp are coordinately regulated, we examined the effects of known inducers of CYP3A (triacetyloleandomycin, rifampicin, dexamethasone, pregnenolone 16alpha-carbonitrile) on Pgp expression in rat liver. We also investigated the gender-specific expression of Pgp and compared its response to dexamethasone between male and female rats. In male rats, western blot analyses showed that rifampicin and dexamethasone caused 50% and 5-fold increases in Pgp levels, respectively. RNase protection assays using gene-specific probes for the three Pgp isoforms revealed a 3-fold increase in mdr2 mRNA levels after dexamethasone administration and a 2-fold increase following rifampicin treatment. Triacetyloleandomycin and pregnenolone 16alpha-carbonitrile had no effect on Pgp expression and mRNA levels. We also observed that the basal level of Pgp was 40% lower in male rats than in females and that mdr2 mRNA levels in male rats were one-half those in females. As opposed to the results in male rats, dexamethasone reduced Pgp expression by approximately 60% and caused a 30% decrease in mdr2 mRNA levels in female rats. Mdr1a was not affected and mdr1b was not detected in female or male rats. We conclude that, at the dosage regimen used, CYP3A and Pgp responses to CYP3A inducers are regulated independently in rat liver. In addition, this study shows that Pgp expression and regulation are gender specific.


Journal of Medicinal Chemistry | 2011

Discovery of a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor (GDC-0980) for the Treatment of Cancer.

Daniel P. Sutherlin; Linda Bao; Megan Berry; Georgette Castanedo; Irina Chuckowree; Jenna Dotson; Adrian Dzh Folks; Lori S. Friedman; Richard Goldsmith; Janet Gunzner; Timothy P. Heffron; John Lesnick; Cristina Lewis; Simon Mathieu; Jeremy Murray; Jim Nonomiya; Jodie Pang; Niel Pegg; Wei Wei Prior; Lionel Rouge; Laurent Salphati; Deepak Sampath; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Binqing Wei; Christian Wiesmann; Ping Wu; Bing-Yan Zhu

The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer.


Drug Metabolism and Disposition | 2013

Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex

Bhagwat Prasad; Raymond Evers; Anshul Gupta; Cornelis E. C. A. Hop; Laurent Salphati; Suneet Shukla; Suresh V. Ambudkar; Jashvant D. Unadkat

Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling.


Journal of Medicinal Chemistry | 2010

Discovery of (Thienopyrimidin-2-yl)aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer.

Daniel P. Sutherlin; Deepak Sampath; Megan Berry; Georgette Castanedo; Zhigang Chang; Irina Chuckowree; Jenna Dotson; Adrian Folkes; Lori Friedman; Richard Goldsmith; Tim Heffron; Leslie Lee; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Alan G. Olivero; Jodie Pang; Wei Wei Prior; Laurent Salphati; Steve Sideris; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Susan Wong; Bing-Yan Zhu

The PI3K/AKT/mTOR pathway has been shown to play an important role in cancer. Starting with compounds 1 and 2 (GDC-0941) as templates, (thienopyrimidin-2-yl)aminopyrimidines were discovered as potent inhibitors of PI3K or both PI3K and mTOR. Structural information derived from PI3K gamma-ligand cocrystal structures of 1 and 2 were used to design inhibitors that maintained potency for PI3K yet improved metabolic stability and oral bioavailability relative to 1. The addition of a single methyl group to the optimized 5 resulted in 21, which had significantly reduced potency for mTOR. The lead compounds 5 (GNE-493) and 21 (GNE-490) have good pharmacokinetic (PK) parameters, are highly selective, demonstrate knock down of pathway markers in vivo, and are efficacious in xenograft models where the PI3K pathway is deregulated. Both compounds were compared in a PI3K alpha mutated MCF7.1 xenograft model and were found to have equivalent efficacy when normalized for exposure.


Drug Metabolism and Disposition | 2013

Interindividual Variability in Hepatic Oatps and P-Glycoprotein (ABCB1) Protein Expression: Quantification by LC-MS/MS and Influence of Genotype, Age and Sex

Bhagwat Prasad; Raymond Evers; Anshul Gupta; Cornelis E. C. A. Hop; Laurent Salphati; Suneet Shukla; Suresh V. Ambudkar; Jashvant D. Unadkat

Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling.

Collaboration


Dive into the Laurent Salphati's collaboration.

Researchain Logo
Decentralizing Knowledge