Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deepak Sampath is active.

Publication


Featured researches published by Deepak Sampath.


Nature Medicine | 2013

ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets

Andrew J. Souers; Joel D. Leverson; Erwin R. Boghaert; Scott L. Ackler; Nathaniel D. Catron; Jun Chen; Brian D Dayton; H. Ding; Sari H. Enschede; Wayne J. Fairbrother; David C. S. Huang; Sarah G. Hymowitz; Sha Jin; Seong Lin Khaw; Peter Kovar; Lloyd T. Lam; Jackie Lee; Heather Maecker; Kennan Marsh; Kylie D. Mason; Michael J. Mitten; Paul Nimmer; Anatol Oleksijew; Chang H. Park; Cheol-Min Park; Darren C. Phillips; Andrew W. Roberts; Deepak Sampath; John F. Seymour; Morey L. Smith

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2–like 1 (BCL-XL), which has shown clinical efficacy in some BCL-2–dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-XL inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2–selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2–dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2–dependent hematological cancers.


Cancer Cell | 2009

Ligand-Independent HER2/HER3/PI3K Complex Is Disrupted by Trastuzumab and Is Effectively Inhibited by the PI3K Inhibitor GDC-0941

Teemu T. Junttila; Robert W. Akita; Kathryn Parsons; Carter Fields; Gail Lewis Phillips; Lori S. Friedman; Deepak Sampath; Mark X. Sliwkowski

Herceptin (trastuzumab) is the backbone of HER2-directed breast cancer therapy and benefits patients in both the adjuvant and metastatic settings. Here, we describe a mechanism of action for trastuzumab whereby antibody treatment disrupts ligand-independent HER2/HER3 interactions in HER2-amplified cells. The kinetics of dissociation parallels HER3 dephosphorylation and uncoupling from PI3K activity, leading to downregulation of proximal and distal AKT signaling, and correlates with the antiproliferative effects of trastuzumab. A selective and potent PI3K inhibitor, GDC-0941, is highly efficacious both in combination with trastuzumab and in the treatment of trastuzumab-resistant cells and tumors.


The EMBO Journal | 2012

Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway

Guanglei Zhuang; Xiumin Wu; Zhaoshi Jiang; Ian Kasman; Jenny Yao; Yinghui Guan; Jason Oeh; Zora Modrusan; Carlos Bais; Deepak Sampath; Napoleone Ferrara

Angiogenesis plays a crucial role during tumorigenesis and much progress has been recently made in elucidating the role of VEGF and other growth factors in the regulation of angiogenesis. Recently, microRNAs (miRNAs) have been shown to modulate a variety of physiogical and pathological processes. We identified a set of differentially expressed miRNAs in microvascular endothelial cells co‐cultured with tumour cells. Unexpectedly, most miRNAs were derived from tumour cells, packaged into microvesicles (MVs), and then directly delivered to endothelial cells. Among these miRNAs, we focused on miR‐9 due to the strong morphological changes induced in cultured endothelial cells. We found that exogenous miR‐9 effectively reduced SOCS5 levels, leading to activated JAK‐STAT pathway. This signalling cascade promoted endothelial cell migration and tumour angiogenesis. Remarkably, administration of anti‐miR‐9 or JAK inhibitors suppressed MV‐induced cell migration in vitro and decreased tumour burden in vivo. Collectively, these observations suggest that tumour‐secreted miRNAs participate in intercellular communication and function as a novel pro‐angiogenic mechanism.


Clinical Cancer Research | 2010

Predictive Biomarkers of Sensitivity to the Phosphatidylinositol 3′ Kinase Inhibitor GDC-0941 in Breast Cancer Preclinical Models

Carol O'Brien; Jeffrey Wallin; Deepak Sampath; Debraj GuhaThakurta; Heidi Savage; Elizabeth Punnoose; Jane Guan; Leanne Berry; Wei Wei Prior; Lukas C. Amler; Marcia Belvin; Lori Friedman; Mark R. Lackner

Purpose: The class I phosphatidylinositol 3′ kinase (PI3K) plays a major role in proliferation and survival in a wide variety of human cancers. A key factor in successful development of drugs targeting this pathway is likely to be the identification of responsive patient populations with predictive diagnostic biomarkers. This study sought to identify candidate biomarkers of response to the selective PI3K inhibitor GDC-0941. Experimental Design: We used a large panel of breast cancer cell lines and in vivo xenograft models to identify candidate predictive biomarkers for a selective inhibitor of class I PI3K that is currently in clinical development. The approach involved pharmacogenomic profiling as well as analysis of gene expression data sets from cells profiled at baseline or after GDC-0941 treatment. Results: We found that models harboring mutations in PIK3CA, amplification of human epidermal growth factor receptor 2, or dual alterations in two pathway components were exquisitely sensitive to the antitumor effects of GDC-0941. We found that several models that do not harbor these alterations also showed sensitivity, suggesting a need for additional diagnostic markers. Gene expression studies identified a collection of genes whose expression was associated with in vitro sensitivity to GDC-0941, and expression of a subset of these genes was found to be intimately linked to signaling through the pathway. Conclusion: Pathway focused biomarkers and the gene expression signature described in this study may have utility in the identification of patients likely to benefit from therapy with a selective PI3K inhibitor. Clin Cancer Res; 16(14); 3670–83. ©2010 AACR.


Molecular Cancer Therapeutics | 2011

GDC-0980 Is a Novel Class I PI3K/mTOR Kinase Inhibitor with Robust Activity in Cancer Models Driven by the PI3K Pathway

Jeffrey Wallin; Kyle A. Edgar; Jane Guan; Megan Berry; Wei Wei Prior; Leslie Lee; John D. Lesnick; Cristina Lewis; Jim Nonomiya; Jodie Pang; Laurent Salphati; Alan G. Olivero; Daniel P. Sutherlin; Carol O'Brien; Jill M. Spoerke; Sonal Patel; Letitia Lensun; Robert Kassees; Leanne Ross; Mark R. Lackner; Deepak Sampath; Marcia Belvin; Lori Friedman

Alterations of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway occur broadly in cancer via multiple mechanisms including mutation of the PIK3CA gene, loss or mutation of phosphatase and tensin homolog (PTEN), and deregulation of mammalian target of rapamycin (mTOR) complexes. The dysregulation of this pathway has been implicated in tumor initiation, cell growth and survival, invasion and angiogenesis, thus, PI3K and mTOR are promising therapeutic targets for cancer. We discovered GDC-0980, a selective, potent, orally bioavailable inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2) with excellent pharmacokinetic and pharmaceutical properties. GDC-0980 potently inhibits signal transduction downstream of both PI3K and mTOR, as measured by pharmacodynamic (PD) biomarkers, thereby acting upon two key pathway nodes to produce the strongest attainable inhibition of signaling in the pathway. Correspondingly, GDC-0980 was potent across a broad panel of cancer cell lines, with the greatest potency in breast, prostate, and lung cancers and less activity in melanoma and pancreatic cancers, consistent with KRAS and BRAF acting as resistance markers. Treatment of cancer cell lines with GDC-0980 resulted in G1 cell-cycle arrest, and in contrast to mTOR inhibitors, GDC-0980 induced apoptosis in certain cancer cell lines, including those with direct pathway activation via PI3K and PTEN. Low doses of GDC-0980 potently inhibited tumor growth in xenograft models including those with activated PI3K, loss of LKB1 or PTEN, and elicited an exposure-related decrease in PD biomarkers. These preclinical data show that GDC-0980 is a potent and effective dual PI3K/mTOR inhibitor with promise for the clinic. Mol Cancer Ther; 10(12); 2426–36. ©2011 AACR.


Science Translational Medicine | 2015

Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy

Joel D. Leverson; Darren C. Phillips; Michael J. Mitten; Erwin R. Boghaert; Stephen K. Tahir; Lisa D. Belmont; Paul Nimmer; Yu Xiao; Xiaoju Max Ma; Kym N. Lowes; Peter Kovar; Jun Chen; Sha Jin; Morey L. Smith; John Xue; Haichao Zhang; Anatol Oleksijew; Terrance J. Magoc; Kedar S. Vaidya; Daniel H. Albert; Jacqueline M. Tarrant; Nghi La; Le Wang; Zhi-Fu Tao; Michael D. Wendt; Deepak Sampath; Saul H. Rosenberg; Chris Tse; David C. S. Huang; Wayne J. Fairbrother

Selective inhibition of BCL-XL synergizes with docetaxel to inhibit the growth of solid tumors but does not inhibit granulopoiesis. A more refined antitumor strategy The BCL-2 family is a group of related proteins that regulate apoptosis in a variety of ways. The success of anticancer treatments often hinges on the ability to induce cancer cell death by apoptosis. As a result, there has been a great deal of interest in developing drugs that can inhibit the antiapoptotic members of the BCL-2 pathway. Unfortunately, some of these drugs are also associated with dose-limiting hematologic toxicities, such as neutropenia. Now, Leverson et al. have used a toolkit of BCL-2 family inhibitors with different specificities to show that specifically inhibiting BCL-XL (one member of this protein family) is effective for killing tumors, but without the common side effects seen with less selective drugs. The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2–selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL–selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL–selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Journal of Medicinal Chemistry | 2011

Discovery of a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor (GDC-0980) for the Treatment of Cancer.

Daniel P. Sutherlin; Linda Bao; Megan Berry; Georgette Castanedo; Irina Chuckowree; Jenna Dotson; Adrian Dzh Folks; Lori S. Friedman; Richard Goldsmith; Janet Gunzner; Timothy P. Heffron; John Lesnick; Cristina Lewis; Simon Mathieu; Jeremy Murray; Jim Nonomiya; Jodie Pang; Niel Pegg; Wei Wei Prior; Lionel Rouge; Laurent Salphati; Deepak Sampath; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Binqing Wei; Christian Wiesmann; Ping Wu; Bing-Yan Zhu

The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer.


Clinical Cancer Research | 2012

Phosphoinositide 3-kinase (PI3K) Pathway Alterations are Associated with Histologic Subtypes and are Predictive of Sensitivity to PI3K Inhibitors in Lung Cancer Preclinical Models

Jill M. Spoerke; Carol O'Brien; Ling Huw; Hartmut Koeppen; Jane Fridlyand; Rainer K. Brachmann; Peter M. Haverty; Ajay Pandita; Sankar Mohan; Deepak Sampath; Lori S. Friedman; Leanne Ross; Garret Hampton; Lukas Amler; David S. Shames; Mark R. Lackner

Purpose: Class 1 phosphatidylinositol 3-kinase (PI3K) plays a major role in cell proliferation and survival in a wide variety of human cancers. Here, we investigated biomarker strategies for PI3K pathway inhibitors in non–small-cell lung cancer (NSCLC). Experimental Design: Molecular profiling for candidate PI3K predictive biomarkers was conducted on a collection of NSCLC tumor samples. Assays included comparative genomic hybridization, reverse-transcription polymerase chain reaction gene expression, mutation detection for PIK3CA and other oncogenes, PTEN immunohistochemistry, and FISH for PIK3CA copy number. In addition, a panel of NSCLC cell lines characterized for alterations in the PI3K pathway was screened with PI3K and dual PI3K/mTOR inhibitors to assess the preclinical predictive value of candidate biomarkers. Results: PIK3CA amplification was detected in 37% of squamous tumors and 5% of adenocarcinomas, whereas PIK3CA mutations were found in 9% of squamous and 0% of adenocarcinomas. Total loss of PTEN immunostaining was found in 21% of squamous tumors and 4% of adenocarcinomas. Cell lines harboring pathway alterations (receptor tyrosine kinase activation, PI3K mutation or amplification, and PTEN loss) were exquisitely sensitive to the PI3K inhibitor GDC-0941. A dual PI3K/mTOR inhibitor had broader activity across the cell line panel and in tumor xenografts. The combination of GDC-0941 with paclitaxel, erlotinib, or a mitogen-activated protein–extracellular signal-regulated kinase inhibitor had greater effects on cell viability than PI3K inhibition alone. Conclusions: Candidate biomarkers for PI3K inhibitors have predictive value in preclinical models and show histology-specific alterations in primary tumors, suggesting that distinct biomarker strategies may be required in squamous compared with nonsquamous NSCLC patient populations. Clin Cancer Res; 18(24); 6771–83. ©2012 AACR.


Journal of Medicinal Chemistry | 2010

Discovery of (Thienopyrimidin-2-yl)aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer.

Daniel P. Sutherlin; Deepak Sampath; Megan Berry; Georgette Castanedo; Zhigang Chang; Irina Chuckowree; Jenna Dotson; Adrian Folkes; Lori Friedman; Richard Goldsmith; Tim Heffron; Leslie Lee; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Alan G. Olivero; Jodie Pang; Wei Wei Prior; Laurent Salphati; Steve Sideris; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Susan Wong; Bing-Yan Zhu

The PI3K/AKT/mTOR pathway has been shown to play an important role in cancer. Starting with compounds 1 and 2 (GDC-0941) as templates, (thienopyrimidin-2-yl)aminopyrimidines were discovered as potent inhibitors of PI3K or both PI3K and mTOR. Structural information derived from PI3K gamma-ligand cocrystal structures of 1 and 2 were used to design inhibitors that maintained potency for PI3K yet improved metabolic stability and oral bioavailability relative to 1. The addition of a single methyl group to the optimized 5 resulted in 21, which had significantly reduced potency for mTOR. The lead compounds 5 (GNE-493) and 21 (GNE-490) have good pharmacokinetic (PK) parameters, are highly selective, demonstrate knock down of pathway markers in vivo, and are efficacious in xenograft models where the PI3K pathway is deregulated. Both compounds were compared in a PI3K alpha mutated MCF7.1 xenograft model and were found to have equivalent efficacy when normalized for exposure.


Cancer Research | 2010

Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors.

Kyle A. Edgar; Jeffrey Wallin; Megan Berry; Leslie Lee; Wei Wei Prior; Deepak Sampath; Lori Friedman; Marcia Belvin

Therapeutic inhibitors are being developed against the phosphoinositide 3-kinase (PI3K) pathway, the deregulation of which drives tumor growth and survival in many cancers. There are eight PI3Ks in mammals divided into three classes. Class IA PI3Ks (p110alpha, p110beta, and p110delta) are critical for cell growth and survival, with the p110alpha isoform implicated as the most important in carcinomas. In this study, we examined the effects of small-molecule inhibitors of class IA PI3Ks to explore the contributions of different isoforms in cancer cells. Similar responses were seen in cancer cells with wild-type or activated mutant PI3K genes treated with p110alpha/delta or p110alpha/beta/delta inhibitors in cell viability assays. In contrast, PTEN-negative cell lines tended to be less responsive (4-fold overall) to an inhibitor of p110alpha/delta versus p110alpha/beta/delta. Combining a p110alpha/delta inhibitor with a p110beta inhibitor resulted in comparable potency to the p110alpha/beta/delta inhibitor. The disparity in efficacy was confirmed in vivo. Pharmacodynamic biomarker analysis revealed that an inhibitor with insufficient potency against the p110beta isoform was less effective at inhibiting the PI3K pathway in PTEN-negative tumor xenografts. Our results imply that patients with PTEN-negative tumors may preferentially benefit from treatment with a class I PI3K inhibitor that is capable of inhibiting the p110beta isoform.

Collaboration


Dive into the Deepak Sampath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel D. Leverson

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge