Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olaf Blanke is active.

Publication


Featured researches published by Olaf Blanke.


Science | 2007

Video ergo sum: Manipulating bodily self-consciousness

Bigna Lenggenhager; Tej Tadi; Thomas Metzinger; Olaf Blanke

Humans normally experience the conscious self as localized within their bodily borders. This spatial unity may break down in certain neurological conditions such as out-of-body experiences, leading to a striking disturbance of bodily self-consciousness. On the basis of these clinical data, we designed an experiment that uses conflicting visual-somatosensory input in virtual reality to disrupt the spatial unity between the self and the body. We found that during multisensory conflict, participants felt as if a virtual body seen in front of them was their own body and mislocalized themselves toward the virtual body, to a position outside their bodily borders. Our results indicate that spatial unity and bodily self-consciousness can be studied experimentally and are based on multisensory and cognitive processing of bodily information.


The Journal of Neuroscience | 2005

Linking Out-of-Body Experience and Self Processing to Mental Own-Body Imagery at the Temporoparietal Junction

Olaf Blanke; Christine Mohr; Christoph M. Michel; Alvaro Pascual-Leone; Peter Brugger; Margitta Seeck; Theodor Landis; Gregor Thut

The spatial unity of self and body is challenged by various philosophical considerations and several phenomena, perhaps most notoriously the “out-of-body experience” (OBE) during which ones visual perspective and ones self are experienced to have departed from their habitual position within ones body. Although researchers started examining isolated aspects of the self, the neurocognitive processes of OBEs have not been investigated experimentally to further our understanding of the self. With the use of evoked potential mapping, we show the selective activation of the temporoparietal junction (TPJ) at 330-400 ms after stimulus onset when healthy volunteers imagined themselves in the position and visual perspective that generally are reported by people experiencing spontaneous OBEs. Interference with the TPJ by transcranial magnetic stimulation (TMS) at this time impaired mental transformation of ones own body in healthy volunteers relative to TMS over a control site. No such TMS effect was observed for imagined spatial transformations of external objects, suggesting the selective implication of the TPJ in mental imagery of ones own body. Finally, in an epileptic patient with OBEs originating from the TPJ, we show partial activation of the seizure focus during mental transformations of her body and visual perspective mimicking her OBE perceptions. These results suggest that the TPJ is a crucial structure for the conscious experience of the normal self, mediating spatial unity of self and body, and also suggest that impaired processing at the TPJ may lead to pathological selves such as OBEs.


Neuron | 2011

Multisensory Mechanisms in Temporo-Parietal Cortex Support Self-Location and First-Person Perspective

Silvio Ionta; Lukas Heydrich; Bigna Lenggenhager; Michael Mouthon; Eleonora Fornari; Dominique Chapuis; Roger Gassert; Olaf Blanke

Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective.


The Neuroscientist | 2005

The Out-of-Body Experience: Disturbed Self-Processing at the Temporo-Parietal Junction

Olaf Blanke; Shahar Arzy

Folk psychology postulates a spatial unity of self and body, a “real me” that resides in one’s body and is the subject of experience. The spatial unity of self and body has been challenged by various philosophical considerations but also by several phenomena, perhaps most notoriously the “out-of-body experience” (OBE) during which one’s visuo-spatial perspective and one’s self are experienced to have departed from their habitual position within one’s body. Here the authors marshal evidence from neurology, cognitive neuroscience, and neuroimaging that suggests that OBEs are related to a failure to integrate multisensory information from one’s own body at the temporo-parietal junction (TPJ). It is argued that this multisensory disintegration at the TPJ leads to the disruption of several phenomenological and cognitive aspects of self-processing, causing illusory reduplication, illusory self-location, illusory perspective, and illusory agency that are experienced as an OBE.


Electroencephalography and Clinical Neurophysiology | 1998

Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography

Margitta Seeck; François Lazeyras; Christophe Michel; Olaf Blanke; Christian A. Gericke; John R. Ives; Jacqueline Delavelle; Xavier Golay; Charles-Antoine Haenggeli; N de Tribolet; Theodor Landis

We present a new approach for non-invasive localization of focal epileptogenic discharges in patients considered for surgical treatment. EEG-triggered functional MR imaging (fMRI) and 3D EEG source localization were combined to map the primary electrical source with high spatial resolution. The method is illustrated by the case of a patient with medically intractable frontal lobe epilepsy. EEG obtained in the MRI system allowed triggering of the fMRI acquisition by the patients habitual epileptogenic discharges. fMRI revealed multiple areas of signal enhancement. Three-dimensional EEG source localization identified the same active areas and provided evidence of onset in the left frontal lobe. Subsequent electrocorticography from subdural electrodes confirmed spike and seizure onset over this region. This approach, i.e. the combination of EEG-triggered fMRI and 3D EEG source analysis, represents a promising additional tool for presurgical epilepsy evaluation allowing precise non-invasive identification of the epileptic foci.


Neuroscience | 2012

The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis

Christophe Lopez; Olaf Blanke; Fred W. Mast

The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.


Neurophysiologie Clinique-clinical Neurophysiology | 2008

Body ownership and embodiment: Vestibular and multisensory mechanisms

Christophe Lopez; Pär Halje; Olaf Blanke

Body ownership and embodiment are two fundamental mechanisms of self-consciousness. The present article reviews neurological data about paroxysmal illusions during which body ownership and embodiment are affected differentially: autoscopic phenomena (out-of-body experience, heautoscopy, autoscopic hallucination, feeling-of-a-presence) and the room tilt illusion. We suggest that autoscopic phenomena and room tilt illusion are related to different types of failures to integrate body-related information (vestibular, proprioceptive and tactile cues) in addition to a mismatch between vestibular and visual references. In these patients, altered body ownership and embodiment has been shown to occur due to pathological activity at the temporoparietal junction and other vestibular-related areas arguing for a key importance of vestibular processing. We also review the possibilities of manipulating body ownership and embodiment in healthy subjects through exposition to weightlessness as well as caloric and galvanic stimulation of the peripheral vestibular apparatus. In healthy subjects, disturbed self-processing might be related to interference of vestibular stimulation with vestibular cortex leading to disintegration of bodily information and altered body ownership and embodiment. We finally propose a differential contribution of the vestibular cortical areas to the different forms of altered body ownership and embodiment.


Frontiers in Psychology | 2013

Visual capture and the experience of having two bodies – Evidence from two different virtual reality techniques

Lukas Heydrich; Trevor J. Dodds; Jane E. Aspell; Bruno Herbelin; Hh Bülthoff; Betty J. Mohler; Olaf Blanke

In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e., participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2) that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body.


Neuron | 2015

Behavioral, Neural, and Computational Principles of Bodily Self-Consciousness

Olaf Blanke; Mel Slater; Andrea Serino

Recent work in human cognitive neuroscience has linked self-consciousness to the processing of multisensory bodily signals (bodily self-consciousness [BSC]) in fronto-parietal cortex and more posterior temporo-parietal regions. We highlight the behavioral, neurophysiological, neuroimaging, and computational laws that subtend BSC in humans and non-human primates. We propose that BSC includes body-centered perception (hand, face, and trunk), based on the integration of proprioceptive, vestibular, and visual bodily inputs, and involves spatio-temporal mechanisms integrating multisensory bodily stimuli within peripersonal space (PPS). We develop four major constraints of BSC (proprioception, body-related visual information, PPS, and embodiment) and argue that the fronto-parietal and temporo-parietal processing of trunk-centered multisensory signals in PPS is of particular relevance for theoretical models and simulations of BSC and eventually of self-consciousness.


PLOS ONE | 2009

Keeping in Touch with One's Self: Multisensory Mechanisms of Self-Consciousness

Jane E. Aspell; Bigna Lenggenhager; Olaf Blanke

Background The spatial unity between self and body can be disrupted by employing conflicting visual-somatosensory bodily input, thereby bringing neurological observations on bodily self-consciousness under scientific scrutiny. Here we designed a novel paradigm linking the study of bodily self-consciousness to the spatial representation of visuo-tactile stimuli by measuring crossmodal congruency effects (CCEs) for the full body. Methodology/Principal Findings We measured full body CCEs by attaching four vibrator-light pairs to the trunks (backs) of subjects who viewed their bodies from behind via a camera and a head mounted display (HMD). Subjects made speeded elevation (up/down) judgments of the tactile stimuli while ignoring light stimuli. To modulate self-identification for the seen body subjects were stroked on their backs with a stick and the felt stroking was either synchronous or asynchronous with the stroking that could be seen via the HMD. We found that (1) tactile stimuli were mislocalized towards the seen body (2) CCEs were modulated systematically during visual-somatosensory conflict when subjects viewed their body but not when they viewed a body-sized object, i.e. CCEs were larger during synchronous than during asynchronous stroking of the body and (3) these changes in the mapping of tactile stimuli were induced in the same experimental condition in which predictable changes in bodily self-consciousness occurred. Conclusions/Significance These data reveal that systematic alterations in the mapping of tactile stimuli occur in a full body illusion and thus establish CCE magnitude as an online performance proxy for subjective changes in global bodily self-consciousness.

Collaboration


Dive into the Olaf Blanke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Serino

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Roy Salomon

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Bruno Herbelin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahar Arzy

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Jane E. Aspell

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge