Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Torregrosa is active.

Publication


Featured researches published by Laurent Torregrosa.


Plant Physiology | 2008

Ectopic Expression of VvMybPA2 Promotes Proanthocyanidin Biosynthesis in Grapevine and Suggests Additional Targets in the Pathway

Nancy Terrier; Laurent Torregrosa; Agnès Ageorges; Sandrine Vialet; Clotilde Verriès; Véronique Cheynier; Charles Romieu

Grapevine (Vitis vinifera) proanthocyanidins contribute to plant defense mechanisms against biotic stress and also play a critical role in organoleptic properties of wine. In grapevine berry, these compounds are mainly accumulated in exocarps and seeds in the very early stages of development. A previous study has already identified VvMybPA1 as the first transcription factor involved in the regulation of the proanthocyanidin pathway during seed development in grapevine. A novel Myb factor, VvMybPA2, which is described in this study, is in contrast mainly expressed in the exocarp of young berries and in the leaves. This transcription factor shows very high protein sequence homology with other plant Myb factors, which regulate flavonoid biosynthesis. Ectopic expression of either VvMybPA1 or VvMybPA2 in grapevine hairy roots induced qualitative and quantitative changes of the proanthocyanidin profiles. High-throughput transcriptomic analyses of transformed grapevine organs identified a large set of putative targets of the VvMybPA1 and VvMybPA2 transcription factors. Both genes significantly activated enzymes of the flavonoid pathway, including anthocyanidin reductase and leucoanthocyanidin reductase 1, the specific terminal steps in the biosynthesis of epicatechin and catechin, respectively, but not leucoanthocyanidin reductase 2. The functional annotation of the genes whose expression was modified revealed putative new actors of the proanthocyanidin pathway, such as glucosyltransferases and transporters.


Plant Physiology | 2009

Grapevine MATE-Type Proteins Act as Vacuolar H+-Dependent Acylated Anthocyanin Transporters

Camila Gomez; Nancy Terrier; Laurent Torregrosa; Sandrine Vialet; Alexandre Fournier-Level; Clotilde Verriès; Jean-Marc Souquet; Jean-Paul Mazauric; Markus Klein; Véronique Cheynier; Agnès Ageorges

In grapevine (Vitis vinifera), anthocyanins are responsible for most of the red, blue, and purple pigmentation found in the skin of berries. In cells, anthocyanins are synthesized in the cytoplasm and accumulated into the vacuole. However, little is known about the transport of these compounds through the tonoplast. Recently, the sequencing of the grapevine genome allowed us to identify genes encoding proteins with high sequence similarity to the Multidrug And Toxic Extrusion (MATE) family. Among them, we selected two genes as anthocyanin transporter candidates and named them anthoMATE1 (AM1) and AM3. The expression of both genes was mainly fruit specific and concomitant with the accumulation of anthocyanin pigment. Subcellular localization assays in grapevine hairy roots stably transformed with AM1∷ or AM3∷green fluorescent protein fusion protein revealed that AM1 and AM3 are primarily localized to the tonoplast. Yeast vesicles expressing anthoMATEs transported acylated anthocyanins in the presence of MgATP. Inhibitor studies demonstrated that AM1 and AM3 proteins act in vitro as vacuolar H+-dependent acylated anthocyanin transporters. By contrast, under our experimental conditions, anthoMATEs could not transport malvidin 3-O-glucoside or cyanidin 3-O-glucoside, suggesting that the acyl conjugation was essential for the uptake. Taken together, these results provide evidence that in vitro the two grapevine AM1 and AM3 proteins mediate specifically acylated anthocyanin transport.


Plant Journal | 2011

In vivo grapevine anthocyanin transport involves vesicle‐mediated trafficking and the contribution of anthoMATE transporters and GST

Camila Gomez; Geneviève Conejero; Laurent Torregrosa; Véronique Cheynier; Nancy Terrier; Agnès Ageorges

In cells, anthocyanin pigments are synthesized at the cytoplasmic surface of the endoplasmic reticulum, and are then transported and finally accumulated inside the vacuole. In Vitis vinifera (grapevine), two kinds of molecular actors are putatively associated with the vacuolar sequestration of anthocyanins: a glutathione-S-transferase (GST) and two MATE-type transporters, named anthoMATEs. However, the sequence of events by which anthocyanins are imported into the vacuole remains unclear. We used MYBA1 transformed hairy roots as a grapevine model tissue producing anthocyanins, and took advantage of the unique autofluorescence of anthocyanins to study their cellular trafficking. In these tissues, anthocyanins were not only visible in the largest vacuoles, but were also present at higher concentrations in several vesicles of different sizes. In the cell, small vesicles actively moved alongside the tonoplast, suggesting a vesicular trafficking to the vacuole. Subcellular localization assays revealed that anthoMATE transporters were closely related with these small vesicles, whereas GST was localized in the cytoplasm around the nucleus, suggesting an association with the endoplasmic reticulum. Furthermore, cells in hairy roots expressing anthoMATE antisense did not display small vesicles filled with anthocyanins, whereas in hairy roots expressing GST antisense, anthocyanins were accumulated in vesicles but not in the vacuole. This suggests that in grapevine, anthoMATE transporters and GST are involved in different anthocyanin transport mechanisms.


Plant Molecular Biology | 2007

Identification of genes associated with flesh morphogenesis during grapevine fruit development

Lucie Fernandez; Laurent Torregrosa; Nancy Terrier; Lekha Sreekantan; Jérôme Grimplet; Christopher Davies; Mark R. Thomas; Charles Romieu; Agnès Ageorges

Fruit morphogenesis is a process unique to the angiosperms, and yet little is known about its developmental control. Following fertilization, fruits typically undergo a dramatic enlargement that is accompanied by differentiation of numerous distinct cell types. To identify genes putatively involved in the early development of grapevine fruit, we used the fleshless berry mutant (Vitis vinifera L. cv Ugni Blanc) that has dramatically reduced fruit size due to a lack of pericarp development. Using oligo-specific arrays, 53 and 50 genes were identified as being down- and up-regulated, respectively, in the mutant. In parallel, Suppression Subtractive Hybridization performed between the mutant and the wild type (WT) allowed the identification of new transcripts differentially expressed during the first stages of mutant and WT pericarp development. From this data, the picture emerged that the mutation promotes the expression of several genes related to ripening and/or to stress and impairs the expression of several regulatory genes. Among those, five genes encoding proteins previously reported to be associated with, or involved in, developmental processes in other species (a specific tissue protein 2, ATHB13, a BURP domain protein, PISTILLATA, and YABBY2), were identified and investigated further using real-time PCR and in situ hybridization. Expression in the pericarp was confirmed, specific spatial and/or temporal patterns were detected and differences were observed between the WT and the mutant during fruit development. Expression of these genes appeared to be affected during young fruit development in the mutant, suggesting that they may play a role in grape berry morphogenesis.


Plant Journal | 2010

Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine

Lucie Fernandez; Laurent Torregrosa; Vincent Segura; Alain Bouquet; José M. Martínez-Zapater

We have characterized the genetic and molecular origin of the reiterated reproductive meristem (RRM) somatic variant phenotype of grapevine cultivar Carignan. Here, we show that the extreme cluster proliferation and delayed anthesis observed in this somatic variant is caused by a single dominant mutation. Transcriptional profiling of Carignan and RRM plants during early stages of inflorescence development demonstrated the overexpression of a few regulatory genes, including VvTFL1A, a close TFL1 Arabidopsis homolog, in RRM inflorescences. Genetic and molecular analyses correlated the insertion of a class-II transposable element, Hatvine1-rrm, in the VvTFL1A promoter, with upregulation of the corresponding VvTFL1A allele in reproductive and vegetative organs of the shoot apex. These results suggest a role for this TFL1 grapevine homolog in the determination of inflorescence structure, with a critical effect on the size and branching pattern of grapevine fruit clusters. Our results demonstrate the existence of spontaneous cis-activation processes caused by class-II transposable elements in grapevine plants, and point to their possible role as a mechanism to generate somatic cell variation in perennial plants. This mechanism is expected to generate dominant phenotypes in chimeric sectors that can be readily exposed to natural selection.


Plant Science | 1994

Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV)

O. Le Gall; Laurent Torregrosa; Y. Danglot; Thierry Candresse; Alain Bouquet

Abstract Transgenic plants of the grapevine rootstock 110 Richter (Vitis Berlandieri × V. rupestris) were regenerated from embryogenic cultures co-cultivated with a disarmed LBA4404 strain of Agrobacterium tumefaciens harbouring a binary vector which contained chimeric genes for hygromycin resistance (HPT), kanamycin resistance (NPT II), β-glucuronidase (GUS) and the coat protein of grapevine chrome mosaic nepovirus (GCMV-CP). The best rate of transformation was obtained by selection of putative embryogenic tissues on 16 μg/ml hygromycin. GUS activity was readily observed in somatic embryos and in transformed plants derived from them. Southern blot analysis demonstrated the integration of the T-DNA sequence into the plant genome. High levels of GCMV-CP expression were detected by ELISA in somatic embryos, leaves and roots of the transformed plants, and confirmed by Western blot.


Functional Plant Biology | 2008

Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew

Angela Feechan; Angelica Jermakow; Laurent Torregrosa; Ralph Panstruga; Ian B. Dry

The European cultivated grapevine, Vitis vinifera L., is a host for the powdery mildew pathogen Erisyphe necator, which is the most economically important fungal disease of viticulture. MLO proteins mediate powdery mildew susceptibility in the model plant species Arabidopsis and the crop plants barley and tomato. Seven VvMLO cDNA sequences were isolated from grapevine and were subsequently identified as part of a 17 member VvMLO gene family within the V. vinifera genome. Phylogenetic analysis of the 17 VvMLO genes in the grape genome indicated that the proteins they encode fall into six distinct clades. The expression of representative VvMLOs from each clade were analysed in a range of grape tissues, as well as in response to a range of biotic and abiotic factors. The VvMLOs investigated have unique, but overlapping tissue expression patterns. Expression analysis of VvMLO genes following E. necator infection identified four upregulated VvMLOs which are orthologous to the Arabidopsis AtMLO2, AtMLO6 and AtMLO12 and tomato SlMLO1 genes required for powdery mildew susceptibility. This suggests a degree of functional redundancy between the proteins encoded by these genes in terms of susceptibility to powdery mildew, and, as such, represent potential targets for modification to generate powdery mildew resistant grapevines.


Plant Journal | 2010

A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions.

Teresa Cuéllar; François Pascaud; Jean-Luc Verdeil; Laurent Torregrosa; Anne-Françoise Adam-Blondon; Jean-Baptiste Thibaud; Hervé Sentenac; Isabelle Gaillard

Grapevine (Vitis vinifera), the genome sequence of which has recently been reported, is considered as a model species to study fleshy fruit development and acid fruit physiology. Grape berry acidity is quantitatively and qualitatively affected upon increased K(+) accumulation, resulting in deleterious effects on fruit (and wine) quality. Aiming at identifying molecular determinants of K(+) transport in grapevine, we have identified a K(+) channel, named VvK1.1, from the Shaker family. In silico analyses indicated that VvK1.1 is the grapevine counterpart of the Arabidopsis AKT1 channel, known to dominate the plasma membrane inward conductance to K(+) in root periphery cells, and to play a major role in K(+) uptake from the soil solution. VvK1.1 shares common functional properties with AKT1, such as inward rectification (resulting from voltage sensitivity) or regulation by calcineurin B-like (CBL)-interacting protein kinase (CIPK) and Ca(2+)-sensing CBL partners (shown upon heterologous expression in Xenopus oocytes). It also displays distinctive features such as activation at much more negative membrane voltages or expression strongly sensitive to drought stress and ABA (upregulation in aerial parts, downregulation in roots). In roots, VvK1.1 is mainly expressed in cortical cells, like AKT1. In aerial parts, VvK1.1 transcripts were detected in most organs, with expression levels being the highest in the berries. VvK1.1 expression in the berry is localized in the phloem vasculature and pip teguments, and displays strong upregulation upon drought stress, by about 10-fold.VvK1.1 could thus play a major role in K(+) loading into berry tissues, especially upon drought stress.


Methods of Molecular Biology | 2015

Grapevine ( Vitis vinifera L . )

Laurent Torregrosa; Sandrine Vialet; Angélique Adivèze; Pat Iocco-Corena; Mark R. Thomas

Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes, and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal cocultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system that meets these criteria. We also describe a protocol for the production of transformed roots suitable for functional gene studies and for the production of semi-transgenic grafted plants.


Plant Physiology | 2006

The Grapevine fleshless berry Mutation. A Unique Genotype to Investigate Differences between Fleshy and Nonfleshy Fruit

Lucie Fernandez; Charles Romieu; Annick Moing; Alain Bouquet; Mickaël Maucourt; Mark R. Thomas; Laurent Torregrosa

In flowering plants, fruit morphogenesis is a distinct process following fertilization resulting in the formation of a specialized organ associated with seeds. Despite large variations in types and shapes among species, fleshy fruits share common characteristics to promote seed dispersal by animals such as organ growth and metabolite accumulation to attract animal feeding. The molecular biology of fruit ripening has received considerable attention, but little is known about the determinism of early fruit morphogenesis and why some fruits are fleshy while others lack flesh. We have identified in grapevine (Vitis vinifera) a mutation we have named fleshless berry (flb) that reduces by 20 times the weight of the pericarp at ripening without any effect on fertility or seed size and number. The flb mutation strongly impaired division and differentiation of the most vacuolated cells in the inner mesocarp. The timing of ripening was not altered by the mutation although the accumulation of malic acid in the green stage was noticeably reduced while sucrose content (instead of hexoses) increased during ripening. The mutation segregates as a single dominant locus. These results indicate that the Flb− mutant is suitable material to advance our understanding of the genetic and developmental processes involved in the differentiation of an ovary into a fruit.

Collaboration


Dive into the Laurent Torregrosa's collaboration.

Top Co-Authors

Avatar

Charles Romieu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Bouquet

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Agnès Ageorges

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nathalie Luchaire

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mark R. Thomas

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Catherine Tesnière

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nancy Terrier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hernán Ojeda

Arts et Métiers ParisTech

View shared research outputs
Researchain Logo
Decentralizing Knowledge