Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauri Anttila is active.

Publication


Featured researches published by Lauri Anttila.


IEEE Transactions on Vehicular Technology | 2008

Circularity-Based I/Q Imbalance Compensation in Wideband Direct-Conversion Receivers

Lauri Anttila; Mikko Valkama; Markku Renfors

Communication receivers that utilize I/Q downconversion are troubled by amplitude and phase mismatches between the analog I and Q branches. These mismatches are unavoidable in practice and reduce the obtainable image frequency attenuation to the 20-40-dB range in practical receivers. In wideband multichannel receivers, where the overall bandwidths are in the range of several megahertz and the incoming carriers located at each others mirror frequencies have a high dynamic range, the image attenuation of the analog front-end (FE) alone is clearly insufficient. In this paper, two novel blind low-complexity I/Q imbalance compensation techniques are proposed and analyzed to digitally enhance the analog FE image attenuation in wideband direct-conversion receivers. The proposed algorithms are grounded on the concept of circular or proper complex random signals, and they are, by design, able to handle the often overlooked yet increasingly important case of frequency-dependent I/Q mismatches. The first technique is an iterative one, stemming from adaptive filtering principles, whereas the second one is a moment-estimation-based block method. The performance of the algorithms is evaluated through computer simulations, as well as real-world laboratory signal measurement examples in practical multicarrier receiver cases. Based on the obtained results, the proposed compensation techniques can provide very good compensation performance with low computational resources and are robust in the face of different imbalance levels and dynamics of the received signals, as well as many other crucial practical aspects such as the effects of the communications channel and carrier synchronization.


IEEE Journal on Selected Areas in Communications | 2014

Widely Linear Digital Self-Interference Cancellation in Direct-Conversion Full-Duplex Transceiver

Dani Korpi; Lauri Anttila; Ville Syrjälä; Mikko Valkama

This paper addresses the modeling and cancellation of self-interference in full-duplex direct-conversion radio transceivers, operating under practical imperfect radio frequency (RF) components. First, detailed self-interference signal modeling is carried out, taking into account the most important RF imperfections, namely, transmitter power amplifier nonlinear distortion as well as transmitter and receiver IQ mixer amplitude and phase imbalances. The analysis shows that after realistic antenna isolation and RF cancellation, the dominant self-interference waveform at the receiver digital baseband can be modeled through a widely linear transformation of the original transmit data, opposed to classical purely linear models. Such widely linear self-interference waveform is physically stemming from the transmitter and receiver IQ imaging and cannot be efficiently suppressed by classical linear digital cancellation. Motivated by this, novel widely linear digital self-interference cancellation processing is then proposed and formulated, combined with efficient parameter estimation methods. Extensive simulation results demonstrate that the proposed widely linear cancellation processing clearly outperforms the existing linear solutions, hence enabling the use of practical low-cost RF front ends utilizing IQ mixing in full-duplex transceivers.


IEEE Transactions on Wireless Communications | 2014

Full-Duplex Transceiver System Calculations: Analysis of ADC and Linearity Challenges

Dani Korpi; Taneli Riihonen; Ville Syrjälä; Lauri Anttila; Mikko Valkama; Risto Wichman

Despite the intensive recent research on wireless single-channel full-duplex communications, relatively little is known about the transceiver chain nonidealities of full-duplex devices. In this paper, the effect of nonlinear distortion occurring in the transmitter power amplifier (PA) and the receiver chain is analyzed, beside the dynamic range requirements of analog-to-digital converters (ADCs). This is done with detailed system calculations, which combine the properties of the individual electronics components to jointly model the complete transceiver chain, including self-interference cancellation. They also quantify the decrease in the dynamic range for the signal of interest caused by self-interference at the analog-to-digital interface. Using these system calculations, we provide comprehensive numerical results for typical transceiver parameters. The analytical results are also confirmed with full waveform simulations. We observe that the nonlinear distortion produced by the transmitter PA is a significant issue in a full-duplex transceiver and, when using cheaper and less linear components, also the receiver chain nonlinearities become considerable. It is also shown that, with digitally intensive self-interference cancellation, the quantization noise of the ADCs is another significant problem.


IEEE Transactions on Microwave Theory and Techniques | 2010

Joint Mitigation of Power Amplifier and I/Q Modulator Impairments in Broadband Direct-Conversion Transmitters

Lauri Anttila; Peter Händel; Mikko Valkama

In this paper, we present a novel digital predistorter structure for joint mitigation of frequency-dependent power amplifier (PA) and in-phase and quadrature (I/Q) modulator impairments in direct-conversion radio transmitters. The predistorter is based on an extended parallel Hammerstein structure, yielding a predistorter that is fully linear in the parameters. In the parameter estimation stage, the indirect learning architecture is utilized. The proposed technique is the first technique in the literature to consider the joint estimation and mitigation of frequency-dependent PA and I/Q modulator impairments. Extensive simulation and measurement analysis is carried out to verify the operation and efficacy of the proposed predistortion structure. It is shown that the adjacent channel power ratio is increased by more than 20 dB in all experiments when using the proposed method, and that the performance of the reference techniques is clearly exceeded.


IEEE Transactions on Circuits and Systems Ii-express Briefs | 2008

Frequency-Selective I/Q Mismatch Calibration of Wideband Direct-Conversion Transmitters

Lauri Anttila; Mikko Valkama; Markku Renfors

The current trend in building low-cost yet flexible radio transceivers is to use the so-called direct-conversion principle, which is based on complex (I/Q) up- and down conversions. Such transceivers are, however, sensitive to mismatches between the I and Q branches. These mismatches are unavoidable in any practical implementation, and result in finite attenuation of the mirror frequencies. In addition to the mirror-frequency interference problem, I/Q mismatches can severely compromise the performance of power amplifier linearization techniques based on pre-distortion. The effects of these impairments are becoming more pronounced as higher order modulated waveforms and/or more wideband multichannel signals are used. This brief focuses on digital-signal-processor-based I/Q mismatch calibration in wideband direct-conversion transmitters, assuming the challenging case of frequency-dependent I/Q mismatch. First, a novel widely linear (WL) calibration structure is introduced, suitable for frequency-dependent calibration. Then, two alternative principles for calibration parameter estimation are proposed. The first estimation approach stems from second-order statistics of complex communication signals, while the second technique is based on WL least-squares model fitting. Both estimators are shown by simulations to yield very good calibration performance. The obtainable performance is further assessed using laboratory RF signal measurements.


IEEE Communications Magazine | 2015

Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays

Mikko Heino; Dani Korpi; Timo Huusari; Emilio Antonio-Rodríguez; Sathya Narayana Venkatasubramanian; Taneli Riihonen; Lauri Anttila; Clemens Icheln; Katsuyuki Haneda; Risto Wichman; Mikko Valkama

In-band full-duplex relays transmit and receive simultaneously at the same center frequency, hence offering enhanced spectral efficiency for relay deployment. In order to deploy such full-duplex relays, it is necessary to efficiently mitigate the inherent self-interference stemming from the strong transmit signal coupling to the sensitive receive chain. In this article, we present novel state-of-the-art antenna solutions as well as digital self-interference cancellation algorithms for compact MIMO full-duplex relays, specifically targeted for reduced-cost deployments in local area networks. The presented antenna design builds on resonant wavetraps and is shown to provide passive isolations on the order of 60-70 dB. We also discuss and present advanced digital cancellation solutions, beyond classical linear processing, specifically tailored against nonlinear distortion of the power amplifier when operating close to saturation. Measured results from a complete demonstrator system, integrating antennas, RF cancellation, and nonlinear digital cancellation, are also presented, evidencing close to 100 dB of overall self-interference suppression. The reported results indicate that building and deploying compact full-duplex MIMO relays is already technologically feasible.


IEEE Transactions on Microwave Theory and Techniques | 2006

Advanced digital signal processing techniques for compensation of nonlinear distortion in wideband multicarrier radio receivers

Mikko Valkama; A. Shahed hagh ghadam; Lauri Anttila; Markku Renfors

One of the main trends in the evolution of radio receivers and other wireless device is to implement more and more of the receiver functionalities using digital signal processing (DSP). However, due to practical limitations in the analog-to-digital conversion process, some analog signal processing stages are likely to remain also in the continuation. With the ever-increasing demands for the system performance and supported data rates on one side, and the terminal flexibility and implementation costs on the other, the requirements for these remaining analog front-end stages become extremely challenging to meet. Then, one interesting idea in this context is to apply sophisticated DSP-based techniques to compensate for some of the most fundamental nonidealities of the receiver analog front-ends. In this paper, we focus on developing and demonstrating novel digital techniques to mitigate the effects of harmonic and intermodulation distortion in wideband multicarrier or multichannel receivers using adaptive interference cancellation. The approach in general is practically oriented and largely based on analyzing and processing measured real-world receiver front-end signals. The obtained results indicate that the proposed compensation technique can be used to suppress nonlinear distortion due to receiver front-end sections under realistic signaling assumptions


IEEE Transactions on Wireless Communications | 2014

Analysis of Oscillator Phase-Noise Effects on Self-Interference Cancellation in Full-Duplex OFDM Radio Transceivers

Ville Syrjälä; Mikko Valkama; Lauri Anttila; Taneli Riihonen; Dani Korpi

This paper addresses the analysis of oscillator phase-noise effects on the self-interference cancellation capability of full-duplex direct-conversion radio transceivers. Closed-form solutions are derived for the power of the residual self-interference stemming from phase noise in two alternative cases of having either independent oscillators or the same oscillator at the transmitter and receiver chains of the full-duplex transceiver. The results show that phase noise has a severe effect on self-interference cancellation in both of the considered cases, and that by using the common oscillator in upconversion and downconversion results in clearly lower residual self-interference levels. The results also show that it is in general vital to use high quality oscillators in full-duplex transceivers, or have some means for phase noise estimation and mitigation in order to suppress its effects. One of the main findings is that in practical scenarios the subcarrier-wise phase-noise spread of the multipath components of the self-interference channel causes most of the residual phase-noise effect when high amounts of self-interference cancellation is desired.


asilomar conference on signals, systems and computers | 2013

Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers

Lauri Anttila; Dani Korpi; Ville Syrjälä; Mikko Valkama

Recently, full-duplex (FD) communications with simultaneous transmission and reception on the same channel has been proposed. The FD receiver, however, suffers from inevitable self-interference (SI) from the much more powerful transmit signal. Analogue radio-frequency (RF) and baseband, as well as digital baseband, cancellation techniques have been proposed for suppressing the SI, but so far most of the studies have failed to take into account the inherent nonlinearities of the transmitter and receiver front-ends. To fill this gap, this article proposes a novel digital nonlinear interference cancellation technique to mitigate the power amplifier (PA) induced nonlinear SI in a FD transceiver. The technique is based on modeling the nonlinear SI channel, which is comprised of the nonlinear PA, the linear multipath SI channel, and the RF SI canceller, with a parallel Hammerstein nonlinearity. Stemming from the modeling, and appropriate parameter estimation, the known transmit data is then processed with the developed nonlinear parallel Hammerstein structure and suppressed from the receiver path at digital baseband. The results illustrate that with a given IIP3 figure for the PA, the proposed technique enables higher transmit power to be used compared to existing linear SI cancellation methods. Alternatively, for a given maximum transmit power level, a lower-quality PA (i.e., lower IIP3) can be used.


IEEE Communications Magazine | 2016

Full-duplex mobile device: pushing the limits

Dani Korpi; Joose Tamminen; Matias Turunen; Timo Huusari; Yang-seok Choi; Lauri Anttila; Shilpa Talwar; Mikko Valkama

In this article, we address the challenges of transmitter-receiver isolation in mobile full-duplex devices, building on shared-antenna-based transceiver architecture. First, self-adaptive analog RF cancellation circuitry is required, since the ability to track time-varying self-interference coupling characteristics is of utmost importance in mobile devices. In addition, novel adaptive nonlinear DSP methods are also required for final self-interference suppression at digital baseband, since mobile-scale devices typically operate under highly nonlinear low-cost RF components. In addition to describing the above kind of advanced circuit and signal processing solutions, comprehensive RF measurement results from a complete demonstrator implementation are also provided, evidencing beyond 40 dB of active RF cancellation over an 80 MHz waveform bandwidth with a highly nonlinear transmitter power amplifier. Measured examples also demonstrate the good self-healing characteristics of the developed control loop against fast changes in the coupling channel. Furthermore, when complemented by nonlinear digital cancellation processing, the residual self-interference level is pushed down to the noise floor of the demonstration system, despite the harsh nonlinear nature of the self-interference. These findings indicate that deploying the full-duplex principle can indeed also be feasible in mobile devices, and thus be one potential technology in, for example, 5G and beyond radio systems.

Collaboration


Dive into the Lauri Anttila's collaboration.

Top Co-Authors

Avatar

Mikko Valkama

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mahmoud Abdelaziz

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dani Korpi

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Adnan Qamar Kiayani

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Markku Renfors

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge