Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurie E. Harrington is active.

Publication


Featured researches published by Laurie E. Harrington.


Nature | 2006

Transforming growth factor-beta induces development of the T(H)17 lineage.

Paul R. Mangan; Laurie E. Harrington; Darrell O'Quinn; Whitney S. Helms; Daniel C. Bullard; Charles O. Elson; Robin D. Hatton; Sharon M. Wahl; Trenton R. Schoeb; Casey T. Weaver

A new lineage of effector CD4+ T cells characterized by production of interleukin (IL)-17, the T-helper-17 (TH17) lineage, was recently described based on developmental and functional features distinct from those of classical TH1 and TH2 lineages. Like TH1 and TH2, TH17 cells almost certainly evolved to provide adaptive immunity tailored to specific classes of pathogens, such as extracellular bacteria. Aberrant TH17 responses have been implicated in a growing list of autoimmune disorders. TH17 development has been linked to IL-23, an IL-12 cytokine family member that shares with IL-12 a common subunit, IL-12p40 (ref. 8). The IL-23 and IL-12 receptors also share a subunit, IL-12Rβ1, that pairs with unique, inducible components, IL-23R and IL-12Rβ2, to confer receptor responsiveness. Here we identify transforming growth factor-β (TGF-β) as a cytokine critical for commitment to TH17 development. TGF-β acts to upregulate IL-23R expression, thereby conferring responsiveness to IL-23. Although dispensable for the development of IL-17-producing T cells in vitro and in vivo, IL-23 is required for host protection against a bacterial pathogen, Citrobacter rodentium. The action of TGF-β on naive T cells is antagonized by interferon-γ and IL-4, thus providing a mechanism for divergence of the TH1, TH2 and TH17 lineages.


Nature | 2006

Transforming growth factor-β induces development of the TH17 lineage

Paul R. Mangan; Laurie E. Harrington; Darrell O'Quinn; Whitney S. Helms; Daniel C. Bullard; Charles O. Elson; Robin D. Hatton; Sharon M. Wahl; Trenton R. Schoeb; Casey T. Weaver

A new lineage of effector CD4+ T cells characterized by production of interleukin (IL)-17, the T-helper-17 (TH17) lineage, was recently described based on developmental and functional features distinct from those of classical TH1 and TH2 lineages. Like TH1 and TH2, TH17 cells almost certainly evolved to provide adaptive immunity tailored to specific classes of pathogens, such as extracellular bacteria. Aberrant TH17 responses have been implicated in a growing list of autoimmune disorders. TH17 development has been linked to IL-23, an IL-12 cytokine family member that shares with IL-12 a common subunit, IL-12p40 (ref. 8). The IL-23 and IL-12 receptors also share a subunit, IL-12Rβ1, that pairs with unique, inducible components, IL-23R and IL-12Rβ2, to confer receptor responsiveness. Here we identify transforming growth factor-β (TGF-β) as a cytokine critical for commitment to TH17 development. TGF-β acts to upregulate IL-23R expression, thereby conferring responsiveness to IL-23. Although dispensable for the development of IL-17-producing T cells in vitro and in vivo, IL-23 is required for host protection against a bacterial pathogen, Citrobacter rodentium. The action of TGF-β on naive T cells is antagonized by interferon-γ and IL-4, thus providing a mechanism for divergence of the TH1, TH2 and TH17 lineages.


Journal of Virology | 2002

Recombinant Vaccinia Virus-Induced T-Cell Immunity: Quantitation of the Response to the Virus Vector and the Foreign Epitope

Laurie E. Harrington; Robbert G. van der Most; J. Lindsay Whitton; Rafi Ahmed

ABSTRACT Recombinant vaccinia viruses (rVV) have been extensively used as vaccines, but there is little information about the total magnitude of the VV-specific T-cell response and how this compares to the immune response to the foreign gene(s) expressed by the rVV. To address this issue, we quantitated the T-cell responses to both the viral vector and the insert following the infection of mice with VV expressing a cytotoxic T lymphocyte (CTL) epitope (NP118-126) from lymphocytic choriomeningitis virus (LCMV). The LCMV epitope-specific response was quantitated by intracellular cytokine staining after stimulation with the specific peptide. To analyze the total VV-specific response, we developed a simple intracellular cytokine staining assay using VV-infected major histocompatibility complex class I and II matched cells as stimulators. Using this approach, we made the following determinations. (i) VV-NP118 induced potent and long-lasting CD8 and CD4 T-cell responses to the vector; at the peak of the response (∼1 week), there were ∼107 VV-specific CD8 T cells (25% of the CD8 T cells) and ∼106 VV-specific CD4 T cells (∼5% of the CD4 T cells) in the spleen. These numbers decreased to ∼5 × 105 CD8 T cells (∼5% frequency) and ∼105 CD4 T cells (∼0.5% frequency), respectively, by day 30 and were then stably maintained at these levels for >300 days. The size of this VV-specific T-cell response was comparable to that of the T-cell response induced following an acute LCMV infection. (ii) VV-specific CD8 and CD4 T cells were capable of producing gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2; all cells were able to make IFN-γ, a subset produced both IFN-γ and TNF-α, and another subset produced all three cytokines. (iii) The CD8 T-cell response to the foreign gene (LCMV NP118-126 epitope) was coordinately regulated with the response to the vector during all three phases (expansion, contraction, and memory) of the T-cell response. The total number of CD8 T cells responding to NP118-126 were ∼20- to 30-fold lower than the number responding to the VV vector (∼1% at the peak and 0.2% in memory). This study provides a better understanding of T-cell immunity induced by VV-based vaccines, and in addition, the technique described in the study can be readily extended to other viral vectors to determine the ratio of the T-cell response to the insert versus the vector. This information will be useful in optimizing prime-boost regimens for vaccination.


Nature | 2008

Memory CD4 T cells emerge from effector T-cell progenitors

Laurie E. Harrington; Karen M. Janowski; James R. Oliver; Allan J. Zajac; Casey T. Weaver

A hallmark of adaptive immunity is the generation of memory T cells that confer long-lived, antigen-specific protection against repeat challenges by pathogens. Understanding the mechanisms by which memory T cells arise is important for rational vaccination strategies and improved therapeutic interventions for chronic infections and autoimmune disorders. The large clonal expansion of CD8 T cells in response to some infections has made the development of CD8 T-cell memory more amenable to study, giving rise to a model of memory cell differentiation in which a fraction of fully competent effector T cells transition into long-lived memory T cells. Delineation of CD4 T-cell memory development has proved more difficult as a result of limitations on tracking the smaller populations of CD4 effector T cells generated during a pathogenic challenge, complicating efforts to determine whether CD4 memory T cells are direct descendants of effector T cells or whether they develop by alternative pathways. Here, using two complementary cytokine reporter mouse models to identify interferon (IFN)-γ-positive effector T cells and track their fate, we show that the lineage relationship between effector and memory CD4 T cells resembles that for CD8 T cells responding to the same pathogen. We find that, in parallel with effector CD8 T cells, IFN-γ-positive effector CD4 T cells give rise to long-lived memory T cells capable of anamnestic responses to antigenic rechallenge.


Nature | 2006

Transforming growth factor-β induces development of the T H 17 lineage

Paul R. Mangan; Laurie E. Harrington; Darrell O'Quinn; Whitney S. Helms; Daniel C. Bullard; Charles O. Elson; Robin D. Hatton; Sharon M. Wahl; Trenton R. Schoeb; Casey T. Weaver

A new lineage of effector CD4+ T cells characterized by production of interleukin (IL)-17, the T-helper-17 (TH17) lineage, was recently described based on developmental and functional features distinct from those of classical TH1 and TH2 lineages. Like TH1 and TH2, TH17 cells almost certainly evolved to provide adaptive immunity tailored to specific classes of pathogens, such as extracellular bacteria. Aberrant TH17 responses have been implicated in a growing list of autoimmune disorders. TH17 development has been linked to IL-23, an IL-12 cytokine family member that shares with IL-12 a common subunit, IL-12p40 (ref. 8). The IL-23 and IL-12 receptors also share a subunit, IL-12Rβ1, that pairs with unique, inducible components, IL-23R and IL-12Rβ2, to confer receptor responsiveness. Here we identify transforming growth factor-β (TGF-β) as a cytokine critical for commitment to TH17 development. TGF-β acts to upregulate IL-23R expression, thereby conferring responsiveness to IL-23. Although dispensable for the development of IL-17-producing T cells in vitro and in vivo, IL-23 is required for host protection against a bacterial pathogen, Citrobacter rodentium. The action of TGF-β on naive T cells is antagonized by interferon-γ and IL-4, thus providing a mechanism for divergence of the TH1, TH2 and TH17 lineages.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation

Hongwei Qin; Wen-I Yeh; Patrizia De Sarno; Andrew T. Holdbrooks; Yudong Liu; Michelle T. Muldowney; Stephanie L. Reynolds; Lora L. Yanagisawa; Thomas H. Fox; Keun Woo Park; Laurie E. Harrington; Chander Raman; Etty N. Benveniste

Suppressor of cytokine signaling (SOCS) proteins are feedback inhibitors of the JAK/STAT pathway. SOCS3 has a crucial role in inhibiting STAT3 activation, cytokine signaling, and inflammatory gene expression in macrophages/microglia. To determine the role of SOCS3 in myeloid cells in neuroinflammation, mice with conditional SOCS3 deletion in myeloid cells (LysMCre-SOCS3fl/fl) were tested for experimental autoimmune encephalomyelitis (EAE). The myeloid-specific SOCS3-deficient mice are vulnerable to myelin oligodendrocyte glycoprotein (MOG)-induced EAE, with a severe, nonresolving atypical form of disease. In vivo, enhanced infiltration of inflammatory cells and demyelination is prominent in the cerebellum of myeloid-specific SOCS3-deficient mice, as is enhanced STAT3 signaling and expression of inflammatory cytokines/chemokines and an immune response dominated by Th1 and Th17 cells. In vitro, SOCS3-deficient macrophages exhibit heightened STAT3 activation and are polarized toward the classical M1 phenotype. SOCS3-deficient M1 macrophages provide the microenvironment to polarize Th1 and Th17 cells and induce neuronal death. Furthermore, adoptive transfer of M2 macrophages into myeloid SOCS3-deficient mice leads to delayed onset and reduced severity of atypical EAE by decreasing STAT3 activation, Th1/Th17 cells, and proinflammatory mediators in the cerebellum. These findings indicate that myeloid cell SOCS3 provides protection from EAE through deactivation of neuroinflammatory responses.


Biological Psychiatry | 2013

Inflammatory T Helper 17 Cells Promote Depression-like Behavior in Mice

Eléonore Beurel; Laurie E. Harrington; Richard S. Jope

BACKGROUND Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact central nervous system functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models, Th17 cells promote susceptibility to depression-like behaviors. METHODS Behavioral characteristics were measured in male mice administered Th17 cells, CD4(+) cells, or vehicle and in retinoid-related orphan receptor-γT (RORγT)(+/GFP) mice or male mice treated with RORγT inhibitor or anti-interleukin-17A antibodies. RESULTS Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-interleukin-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. CONCLUSIONS These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells.


Journal of Immunology | 2014

Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of Experimental Autoimmune Encephalomyelitis

Yudong Liu; Andrew T. Holdbrooks; Patrizia De Sarno; Amber L. Rowse; Lora L. Yanagisawa; Braden C. McFarland; Laurie E. Harrington; Chander Raman; Steffanie Sabbaj; Etty N. Benveniste; Hongwei Qin

Pathogenic Th cells and myeloid cells are involved in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is used by numerous cytokines for signaling and is critical for development, regulation, and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ, and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have used AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in myelin oligodendrocyte glycoprotein-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of proinflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T cells and attenuates Ag presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple preclinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases.


Trends in Immunology | 2011

Cytokines and the inception of CD8 T cell responses

Maureen A. Cox; Laurie E. Harrington; Allan J. Zajac

The activation and differentiation of CD8 T cells is a necessary first step that endows these cells with the phenotypic and functional properties required for the control of intracellular pathogens. The induction of the CD8 T cell responses typically results in the development of a massive overall population of effector cells, comprising both highly functional but short-lived terminally differentiated cells, as well as a smaller subset of precursors that are predisposed to survive and transition into the memory T cell pool. In this review, we discuss how inflammatory cytokines and IL-2 bias the initial response towards short-lived effector generation, and also highlight the potential counterbalancing role of IL-21.


Journal of Immunology | 2011

Glycogen synthase kinase-3 is an early determinant in the differentiation of pathogenic Th17 cells.

Eléonore Beurel; Wen I. Yeh; Suzanne M. Michalek; Laurie E. Harrington; Richard S. Jope

CD4+ T cells are critical for host defense but are also major drivers of immune-mediated diseases. The classical view of Th1 and Th2 subtypes of CD4+ T cells was recently revised by the identification of the Th17 lineage of CD4+ T cells that produce IL-17, which have been found to be critical in the pathogenesis of autoimmune and other diseases. Mechanisms controlling the differentiation of Th17 cells have been well described, but few feasible targets for therapeutically reducing Th17 cells are known. The generation of Th17 cells requires IL-6 and activation of STAT3. During polarization of CD4+ T cells to Th17 cells, we found that inhibition of glycogen synthase kinase-3 (GSK3) blocked IL-6 production, STAT3 activation, and polarization to Th17 cells. Polarization of CD4+ T cells to Th17 cells increased by 10-fold the expression of GSK3β protein levels in Th17 cells, whereas GSK3β was unaltered in regulatory T cells. Diminishing GSK3 activity either pharmacologically or molecularly blocked Th17 cell production, and increasing GSK3 activity promoted polarization to Th17 cells. In vivo inhibition of GSK3 in mice depleted constitutive Th17 cells in intestinal mucosa, blocked Th17 cell generation in the lung after Francisella tularensis infection, and inhibited the increase in spinal cord Th17 cells and disease symptoms in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. These findings identify GSK3 as a critical mediator of Th17 cell production and indicate that GSK3 inhibitors provide a potential therapeutic intervention to control Th17-mediated diseases.

Collaboration


Dive into the Laurie E. Harrington's collaboration.

Top Co-Authors

Avatar

Casey T. Weaver

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Allan J. Zajac

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Paul R. Mangan

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Wen-I Yeh

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Etty N. Benveniste

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Robin D. Hatton

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andrew T. Holdbrooks

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Chander Raman

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ian L. McWilliams

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lora L. Yanagisawa

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge