Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurie K. Read is active.

Publication


Featured researches published by Laurie K. Read.


Molecular and Cellular Biology | 1996

Complexes from Trypanosoma brucei that exhibit deletion editing and other editing-associated properties.

Robert A. Corell; Laurie K. Read; George R. Riley; Jacob K. Nellissery; Thomas E. Allen; Moffett L. Kable; Michael D. Wachal; Scott D. Seiwert; Peter J. Myler; Kenneth Stuart

Transcripts from many mitochondrial genes in kinetoplastids undergo RNA editing, a posttranscriptional process which inserts and deletes uridines. By assaying for deletion editing in vitro, we found that the editing activity from Trypanosoma brucei mitochondrial lysates (S.D. Seiwert and K.D. Stuart), Science 266:114-117,1994) sediments with a peak of approximately 20S. RNA helicase, terminal uridylyl transferase, RNA ligase, and adenylation activities, which may have a role in editing, cosediment in a broad distribution, with most of each activity at 35 to 40S. Most ATPase 6 (A6) guide RNA and unedited A6 mRNA sediments at 20 to 30S, with some sedimenting further into the gradient, while most edited A6 mRNA sediments at >35S. Several mitochondrial proteins which cross-link specifically with guide RNA upon UV treatment also sediment in glycerol gradients. Notably, a 65-kDa protein sediments primarily at approximately 20S, a 90-kDa protein sediments at 35 to 40S, and a 25-kDa protein is present at <10S. Most ribonucleoprotein complexes that form with gRNA in vitro sediment at 10 to 20S, except for one, which sediments at 30 to 45S. These results suggest that RNA editing takes place within a multicomponent complex. The potential functions of and relationships between the 20S and 35 to 40S complexes are discussed.


Molecular and Cellular Biology | 2007

Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes

Mascha Pusnik; Ian Small; Laurie K. Read; Thomas Fabbro; André Schneider

ABSTRACT The pentatricopeptide repeat (PPR), a degenerate 35-amino-acid motif, defines a novel eukaryotic protein family. Plants have 400 to 500 distinct PPR proteins, whereas other eukaryotes generally have fewer than 5. The few PPR proteins that have been studied have roles in organellar gene expression, probably via direct interaction with RNA. Here we show that the parasitic protozoan Trypanosoma brucei encodes 28 distinct PPR proteins, an extraordinarily high number for a nonplant organism. A comparative analysis shows that seven out of eight selected PPR proteins are mitochondrially localized and essential for oxidative phosphorylation. Six of these are required for the stabilization of mitochondrial rRNAs and, like ribosomes, are associated with the mitochondrial membranes. Furthermore, one of the PPR proteins copurifies with the large subunit rRNA. Finally, ablation of all of the PPR proteins that were tested induces degradation of the other PPR proteins, indicating that they function in concert. Our results show that a significant number of trypanosomal PPR proteins are individually essential for the maintenance and/or biogenesis of mitochondrial rRNAs.


Journal of Biological Chemistry | 1999

Trypanosoma brucei RBP16 Is a Mitochondrial Y-box Family Protein with Guide RNA Binding Activity

Mark L. Hayman; Laurie K. Read

Trypanosoma brucei mitochondria possess a unique mechanism of mRNA maturation called RNA editing. In this process, uridylate residues are inserted and deleted posttranscriptionally into pre-mRNA to create translatable messages. The genetic information for RNA editing resides in small RNA molecules called guide RNAs (gRNAs). Thus, proteins in direct contact with gRNA are likely to catalyze or influence RNA editing. Herein we characterize an abundant gRNA-binding protein from T. brucei mitochondria. This protein, which we term RBP16 (for RNA-binding protein of 16 kDa), binds to different gRNA molecules. The major determinant of this interaction is the oligo(U) tail, present on the 3′-ends of gRNAs. RBP16 forms multiple, stable complexes with gRNAin vitro, and immunoprecipitation experiments provide evidence for an association between RBP16 and gRNA within T. brucei mitochondria. Mature RBP16 contains a cold shock domain at the N terminus and a C-terminal region rich in arginine and glycine. The presence of the cold shock domain places RBP16 as the first organellar member of the highly conserved Y-box protein family. The arginine and glycine rich C terminus in combination with the cold shock domain predicts that RBP16 will be involved in the regulation of gene expression at the posttranscriptional level.


Molecular and Cellular Biology | 2005

Opposing Effects of Polyadenylation on the Stability of Edited and Unedited Mitochondrial RNAs in Trypanosoma brucei

Chia-Ying Kao; Laurie K. Read

ABSTRACT Mitochondrial RNAs in Trypanosoma brucei undergo posttranscriptional RNA editing and polyadenylation. We previously showed that polyadenylation stimulates turnover of unedited RNAs. Here, we investigated the role of polyadenylation in decay of edited RPS12 RNA. In in vitro turnover assays, nonadenylated fully edited RNA degrades significantly faster than its unedited counterpart. Rapid turnover of nonadenylated RNA is facilitated by editing at just six editing sites. Surprisingly, in direct contrast to unedited RNA, turnover of fully edited RNA is dramatically slowed by addition of a poly(A)20 tail. The same minimal edited sequence that stimulates decay of nonadenylated RNA is sufficient to switch the poly(A) tail from a destabilizing to a stabilizing element. Both nucleotide composition and length of the 3′ extension are important for stabilization of edited RNA. Titration of poly(A) into RNA degradation reactions has no effect on turnover of polyadenylated edited RNA. These results suggest the presence of a protective protein(s) that simultaneously recognizes the poly(A) tail and small edited element and which blocks the action of a 3′-5′ exonuclease. This study provides the first evidence for opposing effects of polyadenylation on RNA stability within a single organelle and suggests a novel and unique regulation of RNA turnover in this system.


Journal of Parasitology | 1991

Comparison of adenylate cyclase and cAMP-dependent protein kinase in gametocytogenic and nongametocytogenic clones of Plasmodium falciparum.

Laurie K. Read; Ross B. Mikkelsen

Adenylate cyclase and cAMP-dependent protein kinase activities in gametocytogenic (LE5) and nongametocytogenic (T9/96) clones of Plasmodium falciparum were compared to explore the role of cAMP in sexual differentiation of the parasite. Basal adenylate cyclase levels were equivalent in the 2 clones. However, cAMP-dependent histone II-A kinase activity was significantly higher in LE5 than in T9/96 over a range of cAMP concentrations. This difference was due to a decreased Vmax for the enzyme in the nongametocytogenic clone and not to an increased Ka for cAMP. Examination of parasite cAMP-binding proteins, likely to be kinase regulatory subunits, by both photoaffinity labeling with [32P]8-N3-cAMP and affinity chromatography of metabolically [35S]methionine-labeled cytosol of cAMP-agarose revealed a 53-kDa cAMP binding protein in both clones and a 49-kDa cAMP-binding protein in T9/96 that was absent in LE5. Our results suggest that T9/96 has lost the ability to undergo gametocytogenesis due to a substantial decrease in cAMP-dependent protein kinase activity rendering the parasite unable to respond to increased intracellular cAMP levels. Moreover, the reduction in cAMP-dependent protein kinase activity may be due to the presence of an alternative regulatory subunit of the kinase.


Journal of Biological Chemistry | 2008

TbRGG2, an Essential RNA Editing Accessory Factor in Two Trypanosoma brucei Life Cycle Stages

John C. Fisk; Michelle L. Ammerman; Vladimir Presnyak; Laurie K. Read

In the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, RNA editing inserts and/or deletes uridines from pre-mRNAs to produce mature, translatable mRNAs. RNA editing is carried out by several related multiprotein complexes known as editosomes, which contain all of the enzymatic components required for catalysis of editing. In addition, noneditosome accessory factors necessary for editing of specific RNAs have also been described. Here, we report the in vitro and in vivo characterization of the mitochondrial TbRGG2 protein (originally termed TbRGGm) and demonstrate that it acts as an editing accessory factor. TbRGG2 is an RNA-binding protein with a preference for poly(U). TbRGG2 protein levels are up-regulated 10-fold in procyclic form T. brucei compared with bloodstream forms. Nevertheless, the protein is essential for growth in both life cycle stages. TbRGG2 associates with RNase-sensitive and RNase-insensitive mitochondrial complexes, and a small fraction of the protein co-immunoprecipitates with editosomes. RNA interference-mediated depletion of TbRGG2 in both procyclic and bloodstream form T. brucei leads to a dramatic decrease in pan-edited RNAs and in some cases a corresponding increase in the pre-edited RNA. TbRGG2 down-regulation also results in moderate stabilization of never-edited and minimally edited RNAs. Thus, our data are consistent with a model in which TbRGG2 is multifunctional, strongly facilitating the editing of pan-edited RNAs and modestly destabilizing minimally edited and never-edited RNAs. This is the first example of an RNA editing accessory factor that functions in the mammalian infective T. brucei life cycle stage.


Molecular & Cellular Proteomics | 2013

Proteomic Analysis Reveals Diverse Classes of Arginine Methylproteins in Mitochondria of Trypanosomes

John C. Fisk; Jun Li; Hao Wang; John M. Aletta; Jun Qu; Laurie K. Read

Arginine (arg) methylation is a widespread posttranslational modification of proteins that impacts numerous cellular processes such as chromatin remodeling, RNA processing, DNA repair, and cell signaling. Known arg methylproteins arise mostly from yeast and mammals, and are almost exclusively nuclear and cytoplasmic. Trypanosoma brucei is an early branching eukaryote whose genome encodes five putative protein arg methyltransferases, and thus likely contains a plethora of arg methylproteins. Additionally, trypanosomes and related organisms possess a unique mitochondrion that undergoes dramatic developmental regulation and uses novel RNA editing and mitochondrial DNA replication mechanisms. Here, we performed a global mass spectrometric analysis of the T. brucei mitochondrion to identify new arg methylproteins in this medically relevant parasite. Enabling factors of this work are use of a combination digestion with two orthogonal enzymes, an efficient offline two dimensional chromatography separation, and high-resolution mass spectrometry analysis with two complementary activations. This approach led to the comprehensive, sensitive and confident identification and localization of methylarg at a proteome level. We identified 167 arg methylproteins with wide-ranging functions including metabolism, transport, chaperoning, RNA processing, translation, and DNA replication. Our data suggest that arg methylproteins in trypanosome mitochondria possess both trypanosome-specific and evolutionarily conserved modifications, depending on the protein targeted. This study is the first comprehensive analysis of mitochondrial arg methylation in any organism, and represents a significant advance in our knowledge of the range of arg methylproteins and their sites of modification. Moreover, these studies establish T. brucei as a model organism for the study of posttranslational modifications.


Wiley Interdisciplinary Reviews - Rna | 2016

Trypanosome RNA editing: the complexity of getting U in and taking U out

Laurie K. Read; Julius Lukeš; Hassan Hashimi

RNA editing, which adds sequence information to RNAs post‐transcriptionally, is a widespread phenomenon throughout eukaryotes. The most complex form of this process is the uridine (U) insertion/deletion editing that occurs in the mitochondria of kinetoplastid protists. RNA editing in these flagellates is specified by trans‐acting guide RNAs and entails the insertion of hundreds and deletion of dozens of U residues from mitochondrial RNAs to produce mature, translatable mRNAs. An emerging model indicates that the machinery required for trypanosome RNA editing is much more complicated than previously appreciated. A family of RNA editing core complexes (RECCs), which contain the required enzymes and several structural proteins, catalyze cycles of U insertion and deletion. A second, dynamic multiprotein complex, the Mitochondrial RNA Binding 1 (MRB1) complex, has recently come to light as another essential component of the trypanosome RNA editing machinery. MRB1 likely serves as the platform for kinetoplastid RNA editing, and plays critical roles in RNA utilization and editing processivity. MRB1 also appears to act as a hub for coordination of RNA editing with additional mitochondrial RNA processing events. This review highlights the current knowledge regarding the complex molecular machinery involved in trypanosome RNA editing. WIREs RNA 2016, 7:33–51. doi: 10.1002/wrna.1313


Trends in Parasitology | 2013

Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex.

Hassan Hashimi; Sara L. Zimmer; Michelle L. Ammerman; Laurie K. Read; Julius Lukeš

Our understanding of kinetoplastid RNA (kRNA) editing has centered on this paradigm: guide RNAs (gRNAs) provide a blueprint for uridine insertion/deletion into mitochondrial mRNAs by the RNA editing core complex (RECC). The characterization of constituent subunits of the mitochondrial RNA-binding complex 1 (MRB1) implies that it too is vital to the editing process. The recently elucidated MRB1 architecture will be instrumental in putting functional data from individual subunits into context. Our model depicts two functions for MRB1: mediating multi-round kRNA editing by coordinating the exchange of multiple gRNAs required by RECC to edit lengthy regions of mRNAs, and then linking kRNA editing with other RNA processing events.


Nucleic Acids Research | 2012

Architecture of the trypanosome RNA editing accessory complex, MRB1

Michelle L. Ammerman; Kurtis M. Downey; Hassan Hashimi; John C. Fisk; Danielle L. Tomasello; Drahomíra Faktorová; Lucie Kafková; Tony King; Julius Lukeš; Laurie K. Read

Trypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions. To determine the architecture of the MRB1 complex, we performed a comprehensive yeast two-hybrid analysis of 31 reported MRB1 proteins. We also used in vivo analyses of tagged MRB1 components to confirm direct and RNA-mediated interactions. Here, we show that MRB1 contains a core complex comprised of six proteins and maintained by numerous direct interactions. The MRB1 core associates with multiple subcomplexes and proteins through RNA-enhanced or RNA-dependent interactions. These findings provide a framework for interpretation of previous functional studies and suggest that MRB1 is a dynamic complex that coordinates various aspects of mitochondrial gene regulation.

Collaboration


Dive into the Laurie K. Read's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin T. Militello

State University of New York at Geneseo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Qu

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge