Sara L. Zimmer
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara L. Zimmer.
Antimicrobial Agents and Chemotherapy | 2004
Thorsten Mascher; Sara L. Zimmer; Terry Ann Smith; John D. Helmann
ABSTRACT Soil bacteria are among the most prodigious producers of antibiotics. The Bacillus subtilis LiaRS (formerly YvqCE) two-component system is one of several antibiotic-sensing systems that coordinate the genetic response to cell wall-active antibiotics. Upon the addition of vancomycin or bacitracin, LiaRS autoregulates the liaIHGFSR operon. We have characterized the promoter of the lia operon and defined the cis-acting sequences necessary for antibiotic-inducible gene expression. A survey for compounds that act as inducers of the lia promoter revealed that it responds strongly to a subset of cell wall-active antibiotics that interfere with the lipid II cycle in the cytoplasmic membrane (bacitracin, nisin, ramoplanin, and vancomycin). Chemicals that perturb the cytoplasmic membrane, such as organic solvents, are also weak inducers. Thus, the reporter derived from PliaI (the liaI promoter) provides a tool for the detection and classification of antimicrobial compounds.
The Plant Cell | 2007
Shlomit Yehudai-Resheff; Sara L. Zimmer; Yutaka Komine; David B. Stern
Cell survival depends on the cells ability to acclimate to phosphorus (P) limitation. We studied the chloroplast ribonuclease polynucleotide phosphorylase (PNPase), which consumes and generates phosphate, by comparing wild-type Chlamydomonas reinhardtii cells with strains with reduced PNPase expression. In the wild type, chloroplast RNA (cpRNA) accumulates under P limitation, correlating with reduced PNPase expression. PNPase-deficient strains do not exhibit cpRNA variation under these conditions, suggesting that in the wild type PNPase limits cpRNA accumulation under P stress. PNPase levels appear to be mediated by the P response regulator PHOSPHORUS STARVATION RESPONSE1 (PSR1), because in psr1 mutant cells, cpRNA declines under P limitation and PNPase expression is not reduced. PNPase-deficient cells begin to lose viability after 24 h of P depletion, suggesting that PNPase is important for cellular acclimation. PNPase-deficient strains do not have enhanced sensitivity to other physiological or nutrient stresses, and their RNA and cell growth phenotypes are not observed under P stress with phosphite, a phosphate analog that blocks the stress signal. In contrast with RNA metabolism, chloroplast DNA (cpDNA) levels declined under P deprivation, suggesting that P mobilization occurs from DNA rather than RNA. This unusual phenomenon, which is phosphite- and PSR1-insensitive, may have evolved as a result of the polyploid nature of cpDNA and the requirement of P for cpRNA degradation by PNPase.
The Plant Cell | 2004
Yoshiki Nishimura; Elise Kikis; Sara L. Zimmer; Yutaka Komine; David B. Stern
In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Δ26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Δ26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3′ poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS−, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Δ26, in which atpB mRNA is unstable because of the lack of a 3′ stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3′→5′ exonuclease activity, a phenomenon that may occur naturally in the symmetrically transcribed and densely packed chloroplast genome.
Trends in Parasitology | 2013
Hassan Hashimi; Sara L. Zimmer; Michelle L. Ammerman; Laurie K. Read; Julius Lukeš
Our understanding of kinetoplastid RNA (kRNA) editing has centered on this paradigm: guide RNAs (gRNAs) provide a blueprint for uridine insertion/deletion into mitochondrial mRNAs by the RNA editing core complex (RECC). The characterization of constituent subunits of the mitochondrial RNA-binding complex 1 (MRB1) implies that it too is vital to the editing process. The recently elucidated MRB1 architecture will be instrumental in putting functional data from individual subunits into context. Our model depicts two functions for MRB1: mediating multi-round kRNA editing by coordinating the exchange of multiple gRNAs required by RECC to edit lengthy regions of mRNAs, and then linking kRNA editing with other RNA processing events.
RNA | 2012
Lucie Kafková; Michelle L. Ammerman; Drahomíra Faktorová; John C. Fisk; Sara L. Zimmer; Roman Sobotka; Laurie K. Read; Julius Lukeš; Hassan Hashimi
A majority of Trypanosoma brucei proteins have unknown functions, a consequence of its independent evolutionary history within the order Kinetoplastida that allowed for the emergence of several unique biological properties. Among these is RNA editing, needed for expression of mitochondrial-encoded genes. The recently discovered mitochondrial RNA binding complex 1 (MRB1) is composed of proteins with several functions in processing organellar RNA. We characterize two MRB1 subunits, referred to herein as MRB8170 and MRB4160, which are paralogs arisen from a large chromosome duplication occurring only in T. brucei. As with many other MRB1 proteins, both have no recognizable domains, motifs, or orthologs outside the order. We show that they are both novel RNA binding proteins, possibly representing a new class of these proteins. They associate with a similar subset of MRB1 subunits but not directly with each other. We generated cell lines that either individually or simultaneously target the mRNAs encoding both proteins using RNAi. Their dual silencing results in a differential effect on moderately and pan-edited RNAs, suggesting a possible functional separation of the two proteins. Cell growth persists upon RNAi silencing of each protein individually in contrast to the dual knockdown. Yet, their apparent redundancy in terms of cell viability is at odds with the finding that only one of these knockdowns results in the general degradation of pan-edited RNAs. While MRB8170 and MRB4160 share a considerable degree of conservation, our results suggest that their recent sequence divergence has led to them influencing mitochondrial mRNAs to differing degrees.
Genetics | 2008
Sara L. Zimmer; Zhangjun Fei; David B. Stern
Enzymes from several gene families modify RNA molecules at their extremities. These reactions occur in several cellular compartments and affect every class of RNA. To assess the diversity of a subclass of these enzymes, we searched Chlamydomonas for open reading frames (ORFs) potentially encoding exoribonucleases, poly(A) polymerases, and proteins known to associate with and/or regulate them. The ORFs were further analyzed for indications of protein localization to the nucleus, cytosol, mitochondrion, and/or chloroplast. By comparing predicted proteins with homologs in Arabidopsis and yeast, we derived several tentative conclusions regarding RNA 5′- and 3′-end metabolism in Chlamydomonas. First, the alga possesses only one each of the following likely organellar enzymes: polynucleotide phosphorylase, hydrolytic exoribonuclease, poly(A) polymerase, and CCA transferase, a surprisingly small complement. Second, although the core of the nuclear/cytosolic exosome decay complex is well conserved, neither nucleus-specific activators nor the cytosolic exosome activators are present. Finally, our discovery of nine noncanonical poly(A) polymerases, a divergent family retaining the catalytic domains of conventional poly(A) polymerases, leads to the hypothesis that polyadenylation may play an especially important regulatory role throughout the Chlamydomonas cell, stabilizing some transcripts and targeting degradation machinery to others.
Journal of Biological Chemistry | 2011
Sara L. Zimmer; Sarah M. McEvoy; Jun Li; Jun Qu; Laurie K. Read
RNA turnover and RNA editing are essential for regulation of mitochondrial gene expression in Trypanosoma brucei. RNA turnover is controlled in part by RNA 3′ adenylation and uridylation status, with trans-acting factors also impacting RNA homeostasis. However, little is known about the mitochondrial degradation machinery or its regulation in T. brucei. We have identified a mitochondrial exoribonuclease, TbRND, whose expression is highly up-regulated in the insect proliferative stage of the parasite. TbRND shares sequence similarity with RNase D family enzymes but differs from all reported members of this family in possessing a CCHC zinc finger domain. In vitro, TbRND exhibits 3′ to 5′ exoribonuclease activity, with specificity toward uridine homopolymers, including the 3′ oligo(U) tails of guide RNAs (gRNAs) that provide the sequence information for RNA editing. Several lines of evidence generated from RNAi-mediated knockdown and overexpression cell lines indicate that TbRND functions in gRNA metabolism in vivo. First, TbRND depletion results in gRNA tails extended by 2–3 nucleotides on average. Second, overexpression of wild type but not catalytically inactive TbRND results in a substantial decrease in the total gRNA population and a consequent inhibition of RNA editing. The observed effects on the gRNA population are specific as rRNAs, which are also 3′-uridylated, are unaffected by TbRND depletion or overexpression. Finally, we show that gRNA binding proteins co-purify with TbRND. In summary, TbRND is a novel 3′ to 5′ exoribonuclease that appears to have evolved a function highly specific to the mitochondrion of trypanosomes.
PLOS ONE | 2012
Sara L. Zimmer; Sarah M. McEvoy; Sarita Menon; Laurie K. Read
Short, non-encoded oligo(A), oligo(U), or A/U tails can impact mRNA stability in kinetoplastid mitochondria. However, a comprehensive picture of the relative effects of these modifications in RNA stability is lacking. Furthermore, while the U-preferring exoribonuclease TbRND acts on U-tailed gRNAs, its role in decay of uridylated mRNAs has only been cursorily investigated. Here, we analyzed the roles of mRNA 3′ tail composition and TbRND in RNA decay using cells harbouring single or double knockdown of TbRND and the KPAP1 poly(A) polymerase. Analysis of mRNA abundance and tail composition reveals dramatic and transcript-specific effects of adenylation and uridylation on mitochondrial RNAs. Oligo(A) and A-rich tails can stabilize a proportion of edited and never-edited RNAs. However, non-tailed RNAs are not inherently unstable, implicating additional stability determinants and/or spatial segregation of sub-populations of a given RNA in regulation of RNA decay. Oligo(U) tails, which have been shown to contribute to decay of some never-edited RNAs, are not universally destabilizing. We also show that RNAs display very different susceptibility to uridylation in the absence of KPAP1, a factor that may contribute to regulation of decay. Finally, 3′ tail composition apparently impacts the ability of an RNA to be edited.
Nucleic Acids Research | 2018
Evgeny S. Gerasimov; Anna A Gasparyan; Iosif Kaurov; Boris Tichý; Maria D. Logacheva; Alexander A. Kolesnikov; Julius Lukeš; Vyacheslav Yurchenko; Sara L. Zimmer; Pavel Flegontov
Abstract RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3′ to 5′ on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.
mSphere | 2016
Aubie Shaw; Murat C. Kalem; Sara L. Zimmer
Chagas disease is caused by insect-transmitted Trypanosoma cruzi. Halting T. cruzi’s life cycle in one of its various human and insect life stages would effectively stop the parasite’s infection cycle. T. cruzi is exposed to a variety of environmental conditions in its different life stages, and gene expression must be remodeled to survive these changes. In this work, we look at the impact that one of these changes, nutrient depletion, has on the expression of the 20 gene products encoded in the mitochondrial genome that is neglected by whole-genome studies. We show increases in mitochondrial RNA abundances in starved insect-stage cells, under two conditions in which transition to the infectious stage occurs or does not. This report is the first to show that T. cruzi mitochondrial gene expression is sensitive to environmental perturbations, consistent with mitochondrial gene expression regulatory pathways being potential antiparasitic targets. ABSTRACT Trypanosoma cruzi parasites causing Chagas disease are passed between mammals by the triatomine bug vector. Within the insect, T. cruzi epimastigote-stage cells replicate and progress through the increasingly nutrient-restricted digestive tract, differentiating into infectious, nonreplicative metacyclic trypomastigotes. Thus, we evaluated how nutrient perturbations or metacyclogenesis affects mitochondrial gene expression in different insect life cycle stages. We compared mitochondrial RNA abundances in cultures containing fed, replicating epimastigotes, differentiating cultures containing both starved epimastigotes and metacyclic trypomastigotes and epimastigote starvation cultures. We observed increases in mitochondrial rRNAs and some mRNAs in differentiating cultures. These increases predominated only for the edited CYb mRNA in cultures enriched for metacyclic trypomastigotes. For the other transcripts, abundance increases were linked to starvation and were strongest in culture fractions with a high population of starved epimastigotes. We show that loss of both glucose and amino acids results in rapid increases in RNA abundances that are quickly reduced when these nutrients are returned. Furthermore, the individual RNAs exhibit distinct temporal abundance patterns, suggestive of multiple mechanisms regulating individual transcript abundance. Finally, increases in mitochondrial respiratory complex subunit mRNA abundances were not matched by increases in abundances of nucleus-encoded subunit mRNAs, nor were there statistically significant increases in protein levels of three nucleus-encoded subunits tested. These results show that, similarly to that in T. brucei, the mitochondrial genome in T. cruzi has the potential to alter gene expression in response to environmental or developmental stimuli but for an as-yet-unknown purpose. IMPORTANCE Chagas disease is caused by insect-transmitted Trypanosoma cruzi. Halting T. cruzi’s life cycle in one of its various human and insect life stages would effectively stop the parasite’s infection cycle. T. cruzi is exposed to a variety of environmental conditions in its different life stages, and gene expression must be remodeled to survive these changes. In this work, we look at the impact that one of these changes, nutrient depletion, has on the expression of the 20 gene products encoded in the mitochondrial genome that is neglected by whole-genome studies. We show increases in mitochondrial RNA abundances in starved insect-stage cells, under two conditions in which transition to the infectious stage occurs or does not. This report is the first to show that T. cruzi mitochondrial gene expression is sensitive to environmental perturbations, consistent with mitochondrial gene expression regulatory pathways being potential antiparasitic targets.