Laurie M. Baker
University of Missouri–St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurie M. Baker.
Behavioural Brain Research | 2015
Jacob D. Bolzenius; David H. Laidlaw; Ryan P. Cabeen; Thomas E. Conturo; Amanda R. McMichael; Elizabeth M. Lane; Jodi M. Heaps; Lauren E. Salminen; Laurie M. Baker; Staci E. Scott; Sarah A. Cooley; John Gunstad; Robert H. Paul
Obesity, commonly measured with body mass index (BMI), is associated with numerous deleterious health conditions including alterations in brain integrity related to advanced age. Prior research has suggested that white matter integrity observed using diffusion tensor imaging (DTI) is altered in relation to high BMI, but the integrity of specific white matter tracts remains poorly understood. Additionally, no studies have examined white matter tract integrity in conjunction with neuropsychological evaluation associated with BMI among older adults. The present study examined white matter tract integrity using DTI and cognitive performance associated with BMI in 62 healthy older adults (20 males, 42 females) aged 51-81. Results revealed that elevated BMI was associated with lower fractional anisotropy (FA) in the uncinate fasciculus, though there was no evidence of an age by BMI interaction relating to FA in this tract. No relationships were observed between BMI and other white matter tracts or cognition after controlling for demographic variables. Findings suggest that elevated BMI is associated with lower structural integrity in a brain region connecting frontal and temporal lobes and this alteration precedes cognitive dysfunction. Future studies should examine biological mechanisms that mediate the relationships between BMI and white matter tract integrity, as well as the evolution of these abnormalities utilizing longitudinal designs.
Clinical Neuropsychologist | 2015
Sarah A. Cooley; Jodi M. Heaps; Jacob D. Bolzenius; Lauren E. Salminen; Laurie M. Baker; Staci E. Scott; Robert H. Paul
Objective: The Montreal Cognitive Assessment (MoCA) is a brief screening measure commonly used to determine cognitive status among older adults. Despite the popularity of the MoCA, there has been little research into how performance on the MoCA changes over time in healthy older adults. Methods: The present study examined a sample of older adults (n = 53) recruited for a longitudinal study of healthy aging. Change in total MoCA score at three time points (baseline, 12 months, and 48 months) and scores from the Repeatable Battery for the Assessment of Neuropsychological Status at five time points (RBANS; baseline 12 months, 24 months, 36 months, and 48 months) were assessed using repeated measures analyses. Results: Total MoCA score significantly increased across time, particularly between the first and second administrations. Scores did not significantly differ between the second (12 month) and third (48 month) administrations. When grouped by baseline performance, individuals who scored low at baseline significantly improved performance at 12-month testing, but had little change between 12- and 48-month testing. Conversely, individuals who scored high at baseline did not significantly change between baseline and 12-month testing, but improved between 12- and 48-month testing. RBANS scores did not significantly change over time. Conclusions: These results suggest that the MoCA may be susceptible to practice effects, particularly between the first and second administrations. These practice effects should be taken into consideration when repeatedly employing the MoCA to screen for cognitive status in healthy older adults.
Journal of NeuroVirology | 2014
Robert H. Paul; John A. Joska; Carol M. Woods; Soraya Seedat; Susan Engelbrecht; Jacqueline Hoare; Jodi M. Heaps; Victor Valcour; Beau M. Ances; Laurie M. Baker; Lauren E. Salminen; Dan J. Stein
Previous animal studies have identified a C31S residue substitution in the C30C31 dicysteine motif of the Tat protein that is associated with reduced neurovirulence in clade C human immunodeficiency virus (HIV). However, clinical studies of patients infected with clade C HIV have reported significant levels of cognitive impairment. To date, no study has specifically examined cognitive function in clade C-infected patients as a function of the presence or absence of the Tat C31 substitution. The present study investigated the impact of the Tat C30C31S genetic substitution among individuals residing in South Africa infected with clade C HIV that either exhibited the C30C31 motif (n = 128) or the C31S motif (n = 46). A control group of seronegative individuals was included to examine the overall impact of HIV on cognitive performance. All individuals completed a comprehensive neuropsychological battery consisting of tests sensitive to HIV. Results revealed that clade C-infected individuals performed significantly worse across cognitive tests compared to seronegative controls. However, there were no significant differences in cognitive performances between individuals with the C31S motif versus those without the C31S substitution. Proximal CD4 cell count and plasma viral load were unrelated to cognitive performances for either group. Results confirm that the C31S dicysteine motif substitution of the Tat protein does not appreciably moderate neuropsychological outcomes in clade C. Further, these findings highlight the importance of clinical management of cognitive symptoms among individuals infected with this viral clade worldwide.
Journal of Neuroimmune Pharmacology | 2015
Laurie M. Baker; Robert H. Paul; Jodi M. Heaps-Woodruff; Jee Yoon Chang; Mario Ortega; Zachary Margolin; Christina Usher; Brian Basco; Sarah A. Cooley; Beau M. Ances
The incidence of HIV-associated dementia has been greatly reduced in the era of highly active antiretroviral therapy (HAART); however milder forms of cognitive impairment persist. It remains uncertain whether HAART regimens with a high degree of central nervous system penetration effectiveness (CPE) exert beneficial neurological outcomes in HIV-infected (HIV+) individuals on stable treatment. Sixty-four HIV-infected adults on HAART were assigned a CPE score using a published ranking system and divided into high (≥7; n = 35) and low (<7; n = 29) CPE groups. All participants completed neuropsychological testing in addition to structural neuroimaging. Neuropsychological tests included measures known to be sensitive to HIV with values converted into standardized scores (NPZ-4) based on published normative scores. A semi-automated methodology was utilized to assess brain volumetrics within cortical (grey and white matter) and subcortical (thalamus, caudate, putamen) regions of interest. Analyses assessed NPZ-4 and brain volumetric differences between HIV+ individuals with high and low CPE scores. No significant differences in brain integrity were observed between the two groups. Long-term HAART regimens with a high degree of CPE were not associated with significantly improved neuropsychological or neuroimaging outcomes in HIV+ adults. Results suggest that alternate mechanisms may potentially contribute to better neurological outcomes in the era of HAART.
Journal of The International Neuropsychological Society | 2015
Mario Ortega; Laurie M. Baker; Florin Vaida; Robert H. Paul; Brian Basco; Beau M. Ances
Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV-) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV+) individuals. Seventy HIV+ individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV+ individuals were classified as physically active (any energy expended above resting expenditure, n=22) or sedentary (n=48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV+ individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p=.034). Physically active HIV+ individuals performed better on executive (p=.040, unadjusted; p=.043, adjusted) but not motor function (p=.17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearsons r=0.45, p=0.035) but not motor (r=0.21; p=.35) performance. In adjusted analyses the physically active HIV+ individuals had larger putamen volumes (p=.019). A positive relationship exists between PA and brain integrity in HIV+ individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV+ individuals.
Journal of NeuroVirology | 2016
Ashley M. Behrman-Lay; Robert H. Paul; Jodi M. Heaps-Woodruff; Laurie M. Baker; Christina Usher; Beau M. Ances
Most studies that have examined neuropsychological impairments associated with human immunodeficiency virus (HIV) have focused on males, yet females represent one of the largest groups of newly infected patients. Further, few studies have examined neuropsychological performance and neuroimaging outcomes among females compared to males in the modern era of highly active anti-retroviral therapy (HAART). The present study investigated neuropsychological performance and brain volumetrics among HIV+ males (n = 93) and females (n = 44) on stable HAART compared to HIV seronegative (HIV−) males (n = 42) and females (n = 49). Results revealed a significant effect of HIV on neuropsychological performance and neuroimaging measures. An effect of gender, independent of HIV status, was also observed for neuroimaging measures but not neuropsychological performance. Additionally, no significant differences in neuropsychological performance or brain volumetrics were seen between HIV+ males and females. No significant interaction was observed between HIV and gender on either neuropsychological or neuroimaging indices. Our results suggest that both HIV+ males and females treated with HAART experience similar outcomes in terms of brain integrity.
Brain Imaging and Behavior | 2015
Ashley M. Behrman-Lay; Christina Usher; Thomas E. Conturo; Stephen Correia; David H. Laidlaw; Elizabeth M. Lane; Jacob D. Bolzenius; Jodi M. Heaps; Lauren E. Salminen; Laurie M. Baker; Ryan P. Cabeen; Erbil Akbudak; Xi Luo; Peisi Yan; Robert H. Paul
Executive function (EF) and cognitive processing speed (CPS) are two cognitive performance domains that decline with advanced age. Reduced EF and CPS are known to correlate with age-related frontal-lobe volume loss. However, it remains unclear whether white matter microstructure in these regions is associated with age-related decline in EF and/or CPS. We utilized quantitative tractography metrics derived from diffusion-tensor MRI to investigate the relationship between the mean fiber bundle lengths (FBLs) projecting to different lobes, and EF/CPS performance in 73 healthy aging adults. We measured aspects of EF and CPS with the Trail Making Test (TMT), Color-Word Interference Test, Letter-Number Sequencing (L-N Seq), and Symbol Coding. Results revealed that parietal and occipital FBLs explained a significant portion of variance in EF. Frontal, temporal, and occipital FBLs explained a significant portion of variance in CPS. Shorter occipital FBLs were associated with poorer performance on the EF tests TMT-B and CWIT 3. Shorter frontal, parietal, and occipital FBLs were associated with poorer performance on L-N Seq and Symbol Coding. Shorter frontal and temporal FBLs were associated with lower performance on CPS tests TMT-A and CWIT 1. Shorter FBLs were also associated with increased age. Results suggest an age-related FBL shortening in specific brain regions related to poorer EF and CPS performance among older adults. Overall, results support both the frontal aging hypothesis and processing speed theory, suggesting that each mechanism is contributing to age-related cognitive decline.
Neurology | 2014
Laurie M. Baker; David H. Laidlaw; Thomas E. Conturo; Joseph W. Hogan; Yi Zhao; Xi Luo; Stephen Correia; Ryan P. Cabeen; Elizabeth M. Lane; Jodi M. Heaps; Jacob D. Bolzenius; Lauren E. Salminen; Erbil Akbudak; Amanda R. McMichael; Christina Usher; Ashley Behrman; Robert H. Paul
Objective: To investigate the relationship between older age and mean cerebral white matter fiber bundle lengths (FBLs) in specific white matter tracts in the brain using quantified diffusion MRI. Methods: Sixty-three healthy adults older than 50 years underwent diffusion tensor imaging. Tractography tracings of cerebral white matter fiber bundles were derived from the diffusion tensor imaging data. Results: Results revealed significantly shorter FBLs in the anterior thalamic radiation for every 1-year increase over the age of 50 years. Conclusions: We investigated the effects of age on FBL in specific white matter tracts in the brains of healthy older individuals utilizing quantified diffusion MRI. The results revealed a significant inverse relationship between age and FBL. Longitudinal studies of FBL across a lifespan are needed to examine the specific changes to the integrity of white matter.
Brain Imaging and Behavior | 2016
Lauren E. Salminen; Thomas E. Conturo; David H. Laidlaw; Ryan P. Cabeen; Erbil Akbudak; Elizabeth M. Lane; Jodi M. Heaps; Jacob D. Bolzenius; Laurie M. Baker; Sarah A. Cooley; Staci E. Scott; Lee M. Cagle; Sarah Phillips; Robert H. Paul
Aging is associated with microstructural changes in brain tissue that can be visualized using diffusion tensor imaging (DTI). While previous studies have established age-related changes in white matter (WM) diffusion using DTI, the impact of age on gray matter (GM) diffusion remains unclear. The present study utilized DTI metrics of mean diffusivity (MD) to identify age differences in GM/WM microstructure in a sample of healthy older adults (N = 60). A secondary aim was to determine the functional significance of whole-brain GM/WM MD on global cognitive function using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Participants were divided into three age brackets (ages 50–59, 60–69, and 70+) to examine differences in MD and cognition by decade. MD was examined bilaterally in the frontal, temporal, parietal, and occipital lobes for the primary analyses and an aggregate measure of whole-brain MD was used to test relationships with cognition. Significantly higher MD was observed in bilateral GM of the temporal and parietal lobes, and in right hemisphere WM of the frontal and temporal lobes of older individuals. The most robust differences in MD were between the 50–59 and 70+ age groups. Higher whole-brain GM MD was associated with poorer RBANS performance in the 60–69 age group. Results suggest that aging has a significant and differential impact on GM/WM diffusion in healthy older adults, which may explain a modest degree of cognitive variability at specific time points during older adulthood.
Journal of Clinical and Experimental Neuropsychology | 2015
Sarah A. Cooley; Ryan P. Cabeen; David H. Laidlaw; Thomas E. Conturo; Elizabeth M. Lane; Jodi M. Heaps; Jacob D. Bolzenius; Laurie M. Baker; Lauren E. Salminen; Staci E. Scott; Robert H. Paul
Objective: Much of the mild cognitive impairment (MCI) neuroimaging literature has exclusively focused on regions associated with Alzheimer’s disease. Little research has examined white matter abnormalities of other brain regions, including those associated with visual processing, despite evidence that other brain abnormalities appear in these regions in early disease stages. Method: Diffusion tensor imaging (DTI) was utilized to examine participants (n = 44) that completed baseline imaging as part of a longitudinal healthy aging study. Participants were divided into two groups based on scores from the Montreal Cognitive Assessment (MoCA), a brief screening tool for MCI. Participants who scored <26 were defined as “probable MCI” while those who scored ≥26 were labeled cognitively healthy. Two DTI indices were analyzed including fractional anisotropy (FA) and mean diffusivity (MD). DTI values for white matter in the lingual gyrus, cuneus, pericalcarine, fusiform gyrus, and all four lobes were compared using multivariate analysis of variance (MANOVA). Regression analyses examined the relationship between DTI indices and total MoCA score. Results: Results revealed significantly lower FA in the probable MCI group in the cuneus, fusiform, pericalcarine, and occipital lobe, and significantly higher MD in the temporal lobe. Fusiform FA and temporal lobe MD were significantly related to total MoCA score after accounting for age and education. Conclusions: Results indicate that there are posterior white matter microstructural changes in individuals with probable MCI. These differences demonstrate that white matter abnormalities are evident among individuals with probable MCI in regions beyond those commonly associated with Alzheimer’s disease and anterior brain aging patterns.