Ryan P. Cabeen
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan P. Cabeen.
Biological Psychiatry | 2011
Owen R. Phillips; Keith H. Nuechterlein; Robert F. Asarnow; Kristi A. Clark; Ryan P. Cabeen; Yaling Yang; Roger P. Woods; Arthur W. Toga; Katherine L. Narr
BACKGROUND Structural and diffusion tensor imaging studies implicate gray and white matter (WM) abnormalities and disruptions of neural circuitry in schizophrenia. However, the structural integrity of the superficial WM, comprising short-range association (U-fibers) and intracortical axons, has not been investigated in schizophrenia. METHODS High-resolution structural and diffusion tensor images and sophisticated cortical pattern matching methods were used to measure and compare global and local variations in superficial WM fractional anisotropy between schizophrenia patients and their relatives and community comparison subjects and their relatives (n = 150). RESULTS Compared with control subjects, patients showed reduced superficial WM fractional anisotropy distributed across each hemisphere, particularly in left temporal and bilateral occipital regions (all p < .05, corrected). Furthermore, by modeling biological risk for schizophrenia in patients, patient relatives, and control subjects, fractional anisotropy was shown to vary in accordance with relatedness to a patient in both hemispheres and in the temporal and occipital lobes (p < .05, corrected). However, effects did not survive correction procedures for two-group comparisons between patient relatives and control subjects. CONCLUSIONS Results extend previous findings restricted to deep WM pathways to demonstrate that disturbances in corticocortical connectivity are associated with schizophrenia and might indicate a genetic predisposition for the disorder. Because the structural integrity of WM plays a crucial role in the functionality of networks linking gray matter regions, disturbances in the coherence and organization of fibers at the juncture of the neuropil might relate to features of schizophrenia at least partially attributable to disease-related genetic factors.
IEEE Transactions on Medical Imaging | 2012
Ryan P. Cabeen; Anand A. Joshi; Bo Sun; Ivo D. Dinov; Katherine L. Narr; Arthur W. Toga; Roger P. Woods
We present a diffeomorphic approach for constructing intrinsic shape atlases of sulci on the human cortex. Sulci are represented as square-root velocity functions of continuous open curves in R 3, and their shapes are studied as functional representations of an infinite-dimensional sphere. This spherical manifold has some advantageous properties-it is equipped with a Riemannian L 2 metric on the tangent space and facilitates computational analyses and correspondences between sulcal shapes. Sulcal shape mapping is achieved by computing geodesics in the quotient space of shapes modulo scales, translations, rigid rotations, and reparameterizations. The resulting sulcal shape atlas preserves important local geometry inherently present in the sample population. The sulcal shape atlas is integrated in a cortical registration framework and exhibits better geometric matching compared to the conventional euclidean method. We demonstrate experimental results for sulcal shape mapping, cortical surface registration, and sulcal classification for two different surface extraction protocols for separate subject populations.
Behavioural Brain Research | 2015
Jacob D. Bolzenius; David H. Laidlaw; Ryan P. Cabeen; Thomas E. Conturo; Amanda R. McMichael; Elizabeth M. Lane; Jodi M. Heaps; Lauren E. Salminen; Laurie M. Baker; Staci E. Scott; Sarah A. Cooley; John Gunstad; Robert H. Paul
Obesity, commonly measured with body mass index (BMI), is associated with numerous deleterious health conditions including alterations in brain integrity related to advanced age. Prior research has suggested that white matter integrity observed using diffusion tensor imaging (DTI) is altered in relation to high BMI, but the integrity of specific white matter tracts remains poorly understood. Additionally, no studies have examined white matter tract integrity in conjunction with neuropsychological evaluation associated with BMI among older adults. The present study examined white matter tract integrity using DTI and cognitive performance associated with BMI in 62 healthy older adults (20 males, 42 females) aged 51-81. Results revealed that elevated BMI was associated with lower fractional anisotropy (FA) in the uncinate fasciculus, though there was no evidence of an age by BMI interaction relating to FA in this tract. No relationships were observed between BMI and other white matter tracts or cognition after controlling for demographic variables. Findings suggest that elevated BMI is associated with lower structural integrity in a brain region connecting frontal and temporal lobes and this alteration precedes cognitive dysfunction. Future studies should examine biological mechanisms that mediate the relationships between BMI and white matter tract integrity, as well as the evolution of these abnormalities utilizing longitudinal designs.
Evolutionary Biology-new York | 2012
Eladio J. Márquez; Ryan P. Cabeen; Roger P. Woods; David Houle
Geometric morphometrics comprises tools for measuring and analyzing shape as captured by an entire set of landmark configurations. Many interesting questions in evolutionary, genetic, and developmental research, however, are only meaningful at a local level, where a focus on “parts” or “traits” takes priority over properties of wholes. To study variational properties of such traits, current approaches partition configurations into subsets of landmarks which are then studied separately. This approach is unable to fully capture both variational and spatial characteristics of these subsets because interpretability of shape differences is context-dependent. Landmarks omitted from a partition usually contain information about that partition’s shape. We present an interpolation-based approach that can be used to model shape differences at a local, infinitesimal level as a function of information available globally. This approach belongs in a large family of methods that see shape differences as continuous “fields” spanning an entire structure, for which landmarks serve as reference parameters rather than as data. We show, via analyses of simulated and real data, how interpolation models provide a more accurate representation of regional shapes than partitioned data. A key difference of this interpolation approach from current morphometric practice is that one must assume an explicit interpolation model, which in turn implies a particular kind of behavior of the regions between landmarks. This choice presents novel methodological challenges, but also an opportunity to incorporate and test biomechanical models that have sought to explain tissue-level processes underlying the generation of morphological shape.
Brain Imaging and Behavior | 2013
Lauren E. Salminen; Peter R. Schofield; Elizabeth M. Lane; Jodi M. Heaps; Kerrie D. Pierce; Ryan P. Cabeen; David H. Laidlaw; Erbil Akbudak; Thomas E. Conturo; Stephen Correia; Robert H. Paul
The epsilon 4 (e4) isoform of apolipoprotein E (ApoE) is a known genetic risk factor for suboptimal brain health. Morphometry studies of brains with Alzheimer’s disease have reported significant alterations in temporal lobe brain structure of e4 carriers, yet it remains unclear if the presence of an e4 allele is associated with alterations in the microstructure of white matter fiber bundles in healthy populations. The present study used quantitative tractography based on diffusion tensor imaging (qtDTI) to examine the influence of the e4 allele on temporal lobe fiber bundle lengths (FBLs) in 64 healthy older adults with at least one e4 allele (carriers, N = 23) versus no e4 allele (non-carriers, N = 41). Subtests from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were also analyzed to examine memory performance between groups. Analyses revealed shorter FBLs in the left uncinate fasciculus (UF) (p = .038) of e4 carriers compared to non-carriers. By contrast, neither FBLs specific to the temporal lobe nor memory performances differed significantly between groups. Increased age correlated significantly with shorter FBL in the temporal lobe and UF, and with decreased performance on tests of memory. This is the first study to utilize qtDTI to examine relationships between FBL and ApoE genotype. Results suggest that FBL in the UF is influenced by the presence of an ApoE e4 allele (ApoE4) in healthy older adults. Temporal lobe FBLs, however, are more vulnerable to aging than the presence of an e4 allele.
NeuroImage | 2016
Ryan P. Cabeen; Mark E. Bastin; David H. Laidlaw
We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our frameworks data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III.
medical image computing and computer assisted intervention | 2010
Ryan P. Cabeen; Bo Sun; Anand A. Joshi; Boris A. Gutman; Alen Zamanyan; Shruthi Chakrapani; Ivo D. Dinov; Roger P. Woods; Arthur W. Toga
We present a geometric approach for constructing shape atlases of sulcal curves on the human cortex. Sulci and gyri are represented as continuous open curves in R3, and their shapes are studied as elements of an infinite-dimensional sphere. This shape manifold has some nice properties--it is equipped with a Riemannian L2 metric on the tangent space and facilitates computational analyses and correspondences between sulcal shapes. Sulcal mapping is achieved by computing geodesics in the quotient space of shapes modulo rigid rotations and reparameterizations. The resulting sulcal shape atlas is shown to preserve important local geometry inherently present in the sample population. This is demonstrated in our experimental results for deep brain sulci, where we integrate the elastic shape model into surface registration framework for a population of 69 healthy young adult subjects.
Brain Imaging and Behavior | 2015
Ashley M. Behrman-Lay; Christina Usher; Thomas E. Conturo; Stephen Correia; David H. Laidlaw; Elizabeth M. Lane; Jacob D. Bolzenius; Jodi M. Heaps; Lauren E. Salminen; Laurie M. Baker; Ryan P. Cabeen; Erbil Akbudak; Xi Luo; Peisi Yan; Robert H. Paul
Executive function (EF) and cognitive processing speed (CPS) are two cognitive performance domains that decline with advanced age. Reduced EF and CPS are known to correlate with age-related frontal-lobe volume loss. However, it remains unclear whether white matter microstructure in these regions is associated with age-related decline in EF and/or CPS. We utilized quantitative tractography metrics derived from diffusion-tensor MRI to investigate the relationship between the mean fiber bundle lengths (FBLs) projecting to different lobes, and EF/CPS performance in 73 healthy aging adults. We measured aspects of EF and CPS with the Trail Making Test (TMT), Color-Word Interference Test, Letter-Number Sequencing (L-N Seq), and Symbol Coding. Results revealed that parietal and occipital FBLs explained a significant portion of variance in EF. Frontal, temporal, and occipital FBLs explained a significant portion of variance in CPS. Shorter occipital FBLs were associated with poorer performance on the EF tests TMT-B and CWIT 3. Shorter frontal, parietal, and occipital FBLs were associated with poorer performance on L-N Seq and Symbol Coding. Shorter frontal and temporal FBLs were associated with lower performance on CPS tests TMT-A and CWIT 1. Shorter FBLs were also associated with increased age. Results suggest an age-related FBL shortening in specific brain regions related to poorer EF and CPS performance among older adults. Overall, results support both the frontal aging hypothesis and processing speed theory, suggesting that each mechanism is contributing to age-related cognitive decline.
Neurology | 2014
Laurie M. Baker; David H. Laidlaw; Thomas E. Conturo; Joseph W. Hogan; Yi Zhao; Xi Luo; Stephen Correia; Ryan P. Cabeen; Elizabeth M. Lane; Jodi M. Heaps; Jacob D. Bolzenius; Lauren E. Salminen; Erbil Akbudak; Amanda R. McMichael; Christina Usher; Ashley Behrman; Robert H. Paul
Objective: To investigate the relationship between older age and mean cerebral white matter fiber bundle lengths (FBLs) in specific white matter tracts in the brain using quantified diffusion MRI. Methods: Sixty-three healthy adults older than 50 years underwent diffusion tensor imaging. Tractography tracings of cerebral white matter fiber bundles were derived from the diffusion tensor imaging data. Results: Results revealed significantly shorter FBLs in the anterior thalamic radiation for every 1-year increase over the age of 50 years. Conclusions: We investigated the effects of age on FBL in specific white matter tracts in the brains of healthy older individuals utilizing quantified diffusion MRI. The results revealed a significant inverse relationship between age and FBL. Longitudinal studies of FBL across a lifespan are needed to examine the specific changes to the integrity of white matter.
Brain Imaging and Behavior | 2016
Lauren E. Salminen; Thomas E. Conturo; David H. Laidlaw; Ryan P. Cabeen; Erbil Akbudak; Elizabeth M. Lane; Jodi M. Heaps; Jacob D. Bolzenius; Laurie M. Baker; Sarah A. Cooley; Staci E. Scott; Lee M. Cagle; Sarah Phillips; Robert H. Paul
Aging is associated with microstructural changes in brain tissue that can be visualized using diffusion tensor imaging (DTI). While previous studies have established age-related changes in white matter (WM) diffusion using DTI, the impact of age on gray matter (GM) diffusion remains unclear. The present study utilized DTI metrics of mean diffusivity (MD) to identify age differences in GM/WM microstructure in a sample of healthy older adults (N = 60). A secondary aim was to determine the functional significance of whole-brain GM/WM MD on global cognitive function using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Participants were divided into three age brackets (ages 50–59, 60–69, and 70+) to examine differences in MD and cognition by decade. MD was examined bilaterally in the frontal, temporal, parietal, and occipital lobes for the primary analyses and an aggregate measure of whole-brain MD was used to test relationships with cognition. Significantly higher MD was observed in bilateral GM of the temporal and parietal lobes, and in right hemisphere WM of the frontal and temporal lobes of older individuals. The most robust differences in MD were between the 50–59 and 70+ age groups. Higher whole-brain GM MD was associated with poorer RBANS performance in the 60–69 age group. Results suggest that aging has a significant and differential impact on GM/WM diffusion in healthy older adults, which may explain a modest degree of cognitive variability at specific time points during older adulthood.