Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence D. Brewer is active.

Publication


Featured researches published by Lawrence D. Brewer.


Brain Research | 2007

Increased vulnerability of hippocampal neurons with age in culture: temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels.

Lawrence D. Brewer; Olivier Thibault; Jeanise Staton; Veronique Thibault; Justin T. Rogers; Gisela García-Ramos; Susan D. Kraner; Philip W. Landfield; Nada M. Porter

Excessive glutamate (Glu) stimulation of the NMDA-R is a widely recognized trigger for Ca(2+)-mediated excitotoxicity. Primary neurons typically show a large increase in vulnerability to excitotoxicity with increasing days in vitro (DIV). This enhanced vulnerability has been associated with increased expression of the NR2B subunit or increased NMDA-R current, but the detailed age-courses of these variables in primary hippocampal neurons have not been compared in the same study. Further, it is not clear whether the NMDA-R is the only source of excess Ca(2+). Here, we used primary hippocampal neurons to examine the age dependence of the increase in excitotoxic vulnerability with changes in NMDA-R current, and subunit expression. We also tested whether L-type voltage-gated Ca(2+) channels (L-VGCCs) contribute to the enhanced vulnerability. The EC(50) for Glu toxicity decreased by approximately 10-fold between 8-9 and 14-15 DIV, changing little thereafter. Parallel experiments found that during the same period both amplitude and duration of NMDA-R current increased dramatically; this was associated with an increase in protein expression of the NR1 and NR2A subunits, but not of the NR2B subunit. Compared to MK-801, ifenprodil, a selective NR2B antagonist, was less effective in protecting older than younger neurons from Glu insult. Conversely, nimodipine, an L-VGCC antagonist, protected older but not younger neurons. Our results indicate that enhanced excitotoxic vulnerability with age in culture was associated with a substantial increase in NMDA-R current, concomitant increases in NR2A and NR1 but not NR2B subunit expression, and with apparent recruitment of L-VGCCs into the excitotoxic process.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats

Caitlin S. Latimer; Lawrence D. Brewer; James L. Searcy; Kuey-Chu Chen; Jelena Popovic; Susan D. Kraner; Olivier Thibault; Eric M. Blalock; Philip W. Landfield; Nada M. Porter

Significance Higher blood levels of vitamin D are associated with better health outcomes. Vitamin D deficiency, however, is common among the elderly. Despite targets in the brain, little is known about how vitamin D affects cognitive function. In aging rodents, we modeled human serum vitamin D levels ranging from deficient to sufficient and tested whether increasing dietary vitamin D could maintain or improve cognitive function. Treatment was initiated at middle age, when markers of aging emerge, and maintained for ∼6 mo. Compared with low- or normal-dietary vitamin D groups, only aging rats on higher vitamin D could perform a complex memory task and had blood levels considered in the optimal range. These results suggest that vitamin D may improve the likelihood of healthy cognitive aging. Vitamin D is an important calcium-regulating hormone with diverse functions in numerous tissues, including the brain. Increasing evidence suggests that vitamin D may play a role in maintaining cognitive function and that vitamin D deficiency may accelerate age-related cognitive decline. Using aging rodents, we attempted to model the range of human serum vitamin D levels, from deficient to sufficient, to test whether vitamin D could preserve or improve cognitive function with aging. For 5–6 mo, middle-aged F344 rats were fed diets containing low, medium (typical amount), or high (100, 1,000, or 10,000 international units/kg diet, respectively) vitamin D3, and hippocampal-dependent learning and memory were then tested in the Morris water maze. Rats on high vitamin D achieved the highest blood levels (in the sufficient range) and significantly outperformed low and medium groups on maze reversal, a particularly challenging task that detects more subtle changes in memory. In addition to calcium-related processes, hippocampal gene expression microarrays identified pathways pertaining to synaptic transmission, cell communication, and G protein function as being up-regulated with high vitamin D. Basal synaptic transmission also was enhanced, corroborating observed effects on gene expression and learning and memory. Our studies demonstrate a causal relationship between vitamin D status and cognitive function, and they suggest that vitamin D-mediated changes in hippocampal gene expression may improve the likelihood of successful brain aging.


Free Radical Biology and Medicine | 2013

Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: implications for low vitamin D-dependent age-related cognitive decline.

Jeriel T.R. Keeney; Sarah Förster; Rukhsana Sultana; Lawrence D. Brewer; Caitlin S. Latimer; Jian Cai; Jon B. Klein; Nada M. Porter; D. Allan Butterfield

In addition to the well-known effects of vitamin D (VitD) in maintaining bone health, there is increasing appreciation that this vitamin may serve important roles in other organs and tissues, including the brain. Given that VitD deficiency is especially widespread among the elderly, it is important to understand how the range of serum VitD levels that mimic those found in humans (from low to high) affects the brain during aging from middle age to old age. To address this issue, 27 male F344 rats were split into three groups and fed isocaloric diets containing low (100 IU/kg food), control (1000 IU/kg food), or high (10,000 IU/kg food) VitD beginning at middle age (12 months) and continued for a period of 4-5 months. We compared the effects of these dietary VitD manipulations on oxidative and nitrosative stress measures in posterior brain cortices. The low-VitD group showed global elevation of 3-nitrotyrosine compared to control and high-VitD-treated groups. Further investigation showed that this elevation may involve dysregulation of the nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) pathway and NF-κB-mediated transcription of inducible nitric oxide synthase (iNOS) as indicated by translocation of NF-κB to the nucleus and elevation of iNOS levels. Proteomics techniques were used to provide insight into potential mechanisms underlying these effects. Several brain proteins were found at significantly elevated levels in the low-VitD group compared to the control and high-VitD groups. Three of these proteins, 6-phosphofructokinase, triose phosphate isomerase, and pyruvate kinase, are involved directly in glycolysis. Two others, peroxiredoxin-3 and DJ-1/PARK7, have peroxidase activity and are found in mitochondria. Peptidyl-prolyl cis-trans isomerase A (cyclophilin A) has been shown to have multiple roles, including protein folding, regulation of protein kinases and phosphatases, immunoregulation, cell signaling, and redox status. Together, these results suggest that dietary VitD deficiency contributes to significant nitrosative stress in brain and may promote cognitive decline in middle-aged and elderly adults.


Neurobiology of Aging | 2013

Effect of high-fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats.

Tristano Pancani; Katie L. Anderson; Lawrence D. Brewer; Inga Kadish; Chris DeMoll; Philip W. Landfield; Eric M. Blalock; Nada M. Porter; Olivier Thibault

The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether a high-fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation). Young and mid-aged animals were maintained on control or HFD for 4.5 months, and peripheral metabolic variables, cognitive function, and electrophysiological responses to insulin in the hippocampus were measured. HFD increased lipid accumulation in the periphery, although overt diabetes did not develop, nor were spatial learning and memory altered. Hippocampal adiponectin levels were reduced in aging animals but were unaffected by HFD. For the first time, however, we show that the AHP is sensitive to insulin, and that this sensitivity is reduced by HFD. Interestingly, although peripheral glucose regulation was relatively insensitive to HFD, the brain appeared to show greater sensitivity to HFD in F344 rats.


PLOS ONE | 2011

Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice.

Caitlin S. Latimer; James L. Searcy; Michael T. Bridges; Lawrence D. Brewer; Jelena Popovic; Eric M. Blalock; Philip W. Landfield; Olivier Thibault; Nada M. Porter

Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016

Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging

Shaniya Maimaiti; Katie L. Anderson; Chris DeMoll; Lawrence D. Brewer; Benjamin A. Rauh; John C. Gant; Eric M. Blalock; Nada M. Porter; Olivier Thibault

Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimers disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.


Acta neuropathologica communications | 2014

Obesity and diabetes cause cognitive dysfunction in the absence of accelerated β-amyloid deposition in a novel murine model of mixed or vascular dementia

Dana M. Niedowicz; Valerie Reeves; Thomas L. Platt; Katharina Kohler; Tina L. Beckett; David K. Powell; Tiffany Lee; Travis Sexton; Eun Suk Song; Lawrence D. Brewer; Caitlin S. Latimer; Susan D. Kraner; Kara L Larson; Sabire Özcan; Christopher M. Norris; Louis B. Hersh; Nada M. Porter; Donna M. Wilcock; Michael P. Murphy

Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer’s disease (AD), though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNLx PS1P264L/P264L knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes, and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including aneurysms and small strokes. Cortical Aβ deposition was not significantly increased in the diabetic mice, though overall expression of presenilin was elevated. Surprisingly, Aβ was not deposited in the vasculature or removed to the plasma, and there was no stimulation of activity or expression of major Aβ-clearing enzymes (neprilysin, insulin degrading enzyme, or endothelin-converting enzyme). The db/AD mice displayed marked cognitive impairment in the Morris Water Maze, compared to either db/db or APPΔNLx PS1P264L mice. We conclude that the diabetes and/or obesity in these mice leads to a destabilization of the vasculature, leading to strokes and that this, in turn, leads to a profound cognitive impairment and that this is unlikely to be directly dependent on Aβ deposition. This model of mixed or vascular dementia provides an exciting new avenue of research into the mechanisms underlying the obesity-related risk for age-related dementia, and will provide a useful tool for the future development of therapeutics.


The Journal of Neuroscience | 2009

Estradiol reverses a calcium-related biomarker of brain aging in female rats.

Lawrence D. Brewer; Amy L.S. Dowling; Meredith A. Curran-Rauhut; Philip W. Landfield; Nada M. Porter; Eric M. Blalock

An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, although estrogen (17β-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was used to expose cornu ammonis 1 (CA1) pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Cav1.2 LTCC subunit, but not the Cav1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current.


Endocrinology | 2013

Glucocorticoid-Dependent Hippocampal Transcriptome in Male Rats: Pathway-Specific Alterations With Aging

Kuey-Chu Chen; Eric M. Blalock; Meredith A. Curran-Rauhut; Inga Kadish; Susan J. Blalock; Lawrence D. Brewer; Nada M. Porter; Philip W. Landfield

Although glucocorticoids (GCs) are known to exert numerous effects in the hippocampus, their chronic regulatory functions remain poorly understood. Moreover, evidence is inconsistent regarding the long-standing hypothesis that chronic GC exposure promotes brain aging/Alzheimer disease. Here, we adrenalectomized male F344 rats at 15 months of age, maintained them for 3 months with implanted corticosterone (CORT) pellets producing low or intermediate (glucocorticoid receptor–activating) blood levels of CORT, and performed microarray/pathway analyses in hippocampal CA1. We defined the chronic GC-dependent transcriptome as 393 genes that exhibited differential expression between intermediate and low CORT groups. Short-term CORT (4 days) did not recapitulate this transcriptome. Functional processes/pathways overrepresented by chronic CORT–up-regulated genes included learning/plasticity, differentiation, glucose metabolism, and cholesterol biosynthesis, whereas processes overrepresented by CORT–down-regulated genes included inflammatory/immune/glial responses and extracellular structure. These profiles indicate that GCs chronically activate neuronal/metabolic processes while coordinately repressing a glial axis of reactivity/inflammation. We then compared the GC transcriptome with a previously defined hippocampal aging transcriptome, revealing a high proportion of common genes. Although CORT and aging moved expression of some common genes in the same direction, the majority were shifted in opposite directions by CORT and aging (eg, glial inflammatory genes down-regulated by CORT are up-regulated with aging). These results contradict the hypothesis that GCs simply promote brain aging and also suggest that the opposite direction shifts during aging reflect resistance to CORT regulation. Therefore, we propose a new model in which aging-related GC resistance develops in some target pathways, whereas GC overstimulation develops in others, together generating much of the brain aging phenotype.


European Journal of Pharmacology | 2013

Hippocampal calcium dysregulation at the nexus of diabetes and brain aging

Olivier Thibault; Katie L. Anderson; Chris DeMoll; Lawrence D. Brewer; Philip W. Landfield; Nada M. Porter

Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimers disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory. Several studies have also shown that diabetes induces Ca(2+) dysregulation in neurons. Because brain aging is associated with substantial Ca(2+) dyshomeostasis, it has been proposed that impaired insulin signaling exacerbates or accelerates aging-related Ca(2+) dyshomeostasis. However, there have been few studies examining insulin interactions with Ca(2+) regulation in aging animals. We have been testing predictions of the Ca(2+) dysregulation/diabetes/brain aging hypothesis and have found that insulin and insulin-sensitizers (thiazolidinediones) target several hippocampal Ca(2+)-related processes affected by aging. The drugs appear able to reduce the age-dependent increase in Ca(2+) transients and the Ca(2+) -sensitive afterhyperpolarization. Thus, while additional testing is needed, the results to date are consistent with the view that strategies that enhance insulin signaling can counteract the effect of aging on Ca(2+) dysregulation.

Collaboration


Dive into the Lawrence D. Brewer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge