Olivier Thibault
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Thibault.
Aging Cell | 2007
Olivier Thibault; John C. Gant; Philip W. Landfield
Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimers disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging‐related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+ transients, and L‐type voltage‐gated Ca2+ channel (L‐VGCC) activity. Several of these changes have been associated with age‐related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L‐VGCC activity drives many of the other Ca2+‐related biomarkers of hippocampal aging. In addition, other studies have reported aging‐ or AD model‐related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+‐sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+‐induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L‐VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca2+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+‐related biomarkers of aging. Consequently, we propose an expanded L‐VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L‐type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+‐dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.
The Journal of Neuroscience | 2001
Olivier Thibault; R. W. Hadley; Philip W. Landfield
Considerable evidence supports a Ca2+dysregulation hypothesis of brain aging and Alzheimers disease. However, it is still not known whether (1) intracellular [Ca2+]i is altered in aged brain neurons during synaptically activated neuronal activity; (2) altered [Ca2+]i is directly correlated with impaired neuronal plasticity; or (3) the previously observed age-related increase in L-type voltage-sensitive Ca2+ channel (L-VSCC) density in hippocampal neurons is sufficient to impair synaptic plasticity. Here, we used confocal microscopy to image [Ca2+]i in single CA1 neurons in hippocampal slices of young-adult and aged rats during repetitive synaptic activation. Simultaneously, we recorded intracellular EPSP frequency facilitation (FF), a form of short-term synaptic plasticity that is impaired with aging and inversely correlated with cognitive function. Resting [Ca2+]i did not differ clearly with age. Greater elevation of somatic [Ca2+]i and greater depression of FF developed in aged neurons during 20 sec trains of 7 Hz synaptic activation, but only if the activation triggered repetitive action potentials for several seconds. Elevated [Ca2+]i and FF also were negatively correlated in individual aged neurons. In addition, the selective L-VSCC agonist Bay K8644 increased the afterhyperpolarization and mimicked the depressive effects of aging on FF in young-adult neurons. Thus, during physiologically relevant firing patterns in aging neurons, postsynaptic Ca2+ elevation is closely associated with altered neuronal plasticity. Moreover, selectively increasing postsynaptic L-VSCC activity, as occurs in aging, negatively regulated a form of short-term plasticity that enhances synaptic throughput. Together, the results elucidate novel processes that may contribute to impaired cognitive function in aging.
The Journal of Neuroscience | 2007
Wayne B. Rowe; Eric M. Blalock; Kuey-Chu Chen; Inga Kadish; Daguang Wang; James E. Barrett; Olivier Thibault; Nada M. Porter; Gregory M. Rose; Philip W. Landfield
Although expression of some genes is known to change during neuronal activity or plasticity, the overall relationship of gene expression changes to memory or memory disorders is not well understood. Here, we combined extensive statistical microarray analyses with behavioral testing to comprehensively identify genes and pathways associated with aging and cognitive dysfunction. Aged rats were separated into cognitively unimpaired (AU) or impaired (AI) groups based on their Morris water maze performance relative to young-adult (Y) animals. Hippocampal gene expression was assessed in Y, AU, and AI on the fifth (last) day of maze training (5T) or 21 d posttraining (21PT) and in nontrained animals (eight groups total, one array per animal; n = 78 arrays). ANOVA and linear contrasts identified genes that differed from Y generally with aging (differed in both AU and AI) or selectively, with cognitive status (differed only in AI or AU). Altered pathways/processes were identified by overrepresentation analyses of changed genes. With general aging, there was downregulation of axonal growth, cytoskeletal assembly/transport, signaling, and lipogenic/uptake pathways, concomitant with upregulation in immune/inflammatory, lysosomal, lipid/protein degradation, cholesterol transport, transforming growth factor, and cAMP signaling pathways, primarily independent of training condition. Selectively, in AI, there was downregulation at 5T of immediate-early gene, Wnt (wingless integration site), insulin, and G-protein signaling, lipogenesis, and glucose utilization pathways, whereas Notch2 (oligodendrocyte development) and myelination pathways were upregulated, particularly at 21PT. In AU, receptor/signal transduction genes were upregulated, perhaps as compensatory responses. Immunohistochemistry confirmed and extended selected microarray results. Together, the findings suggest a new model, in which deficient neuroenergetics leads to downregulated neuronal signaling and increased glial activation, resulting in aging-related cognitive dysfunction.
The Journal of Neuroscience | 2009
Inga Kadish; Olivier Thibault; Eric M. Blalock; Kuey-C. Chen; John C. Gant; Nada M. Porter; Philip W. Landfield
Multiple hippocampal processes and cognitive functions change with aging or Alzheimers disease, but the potential triggers of these aging cascades are not well understood. Here, we quantified hippocampal expression profiles and behavior across the adult lifespan to identify early aging changes and changes that coincide with subsequent onset of cognitive impairment. Well powered microarray analyses (N = 49 arrays), immunohistochemistry, and Morris spatial maze learning were used to study male F344 rats at five age points. Genes that changed with aging (by ANOVA) were assigned to one of four onset age ranges based on template pattern matching; functional pathways represented by these genes were identified statistically (Gene Ontology). In the earliest onset age range (3–6 months old), upregulation began for genes in lipid/protein catabolic and lysosomal pathways, indicating a shift in metabolic substrates, whereas downregulation began for lipid synthesis, GTP/ATP-dependent signaling, and neural development genes. By 6–9 months of age, upregulation of immune/inflammatory cytokines was pronounced. Cognitive impairment first appeared in the midlife range (9–12 months) and coincided and correlated primarily with midlife upregulation of genes associated with cholesterol trafficking (apolipoprotein E), myelinogenic, and proteolytic/major histocompatibility complex antigen-presenting pathways. Immunolabeling revealed that cholesterol trafficking proteins were substantially increased in astrocytes and that myelination increased with aging. Together, our data suggest a novel sequential model in which an early-adult metabolic shift, favoring lipid/ketone body oxidation, triggers inflammatory degradation of myelin and resultant excess cholesterol that, by midlife, activates cholesterol transport from astrocytes to remyelinating oligodendrocytes. These processes may damage structure and compete with neuronal pathways for bioenergetic resources, thereby impairing cognitive function.
The Journal of Neuroscience | 2006
John C. Gant; Michelle M. Sama; Philip W. Landfield; Olivier Thibault
Age-dependent changes in multiple Ca2+-related electrophysiological processes in the hippocampus appear to be consistent biomarkers of aging, and several also correlate with cognitive decline. These findings have led to the hypothesis that a common mechanism of Ca2+ dyshomeostasis underlies aspects of aging-dependent brain impairment. However, some key predictions of this view remain untested, including that multiple Ca2+-related biomarkers should emerge concurrently during aging and their onset should also precede/coincide with initial signs of cognitive decline. Moreover, blocking a putative common source of dysregulated Ca2+ should eliminate aging differences. Here, we tested these predictions using combined electrophysiological, imaging, and pharmacological approaches in CA1 neurons to determine the ages of onset (across 4-, 10-, 12-, 14-, and 23-month-old F344 rats) of several established biomarkers, including the increases in the slow afterhyperpolarization, spike accommodation, and [Ca2+]i rise during repetitive synaptic stimulation. In addition, we tested the hypothesis that altered Ca2+-induced Ca2+ release (CICR) from ryanodine receptors, which can be triggered by L-type Ca2+ channels, provides a common source of dysregulated Ca2+ in aging. Results showed that multiple aging biomarkers were first detectable at about the same age (12 months of age; approximately midlife), sufficiently early to influence initial cognitive decline. Furthermore, selectively blocking CICR with ryanodine slowed the Ca2+ rise during synaptic stimulation more in aged rat neurons and, notably, reduced or eliminated aging differences in the biomarkers. Thus, this study provides the first evidence that altered CICR plays a role in driving the early and simultaneous emergence in hippocampus of multiple Ca2+-related biomarkers of aging.
Brain Research | 1988
Ursula Staubli; John Larson; Olivier Thibault; Michel Baudry; Gary Lynch
It has been proposed that activation of a calcium-sensitive protease (calpain) is a crucial step in the induction of long-term potentiation (LTP). To test this hypothesis, we used chronic recording techniques to measure the effects of intraventricular infusion of leupeptin, a calpain inhibitor, on LTP in the hippocampus. Rats implanted bilaterally with stimulating electrodes in the Schaffer-commissural system and one recording electrode in the apical dendrites of field CA1 were fitted with osmotic mini-pumps delivering either leupeptin (20 mg/ml) or saline at a rate of 0.5 microliter/h into the lateral ventricle. Short bursts of high-frequency stimulation with the bursts delivered at 5/s were used to induce LTP in those animals which had stable responses for several days. Rats in the saline group (n = 11) exhibited an immediate LTP effect that remained in place over successive days of testing, while only 3 of 13 leupeptin treated animals showed evidence of LTP 24 h after high-frequency stimulation, and in only one of those was a sizeable effect recorded over several days. The average change in responses at the 24-h test point was +33% for the controls and +4% for the leupeptin group (P less than 0.01). The block of LTP induction was reversible, since high-frequency stimulation applied after disconnecting the pumps led to a robust LTP effect that lasted for several days in 6 of 7 animals tested. There were no detectable differences in baseline responses in the presence and absence of leupeptin.
Journal of Alzheimer's Disease | 2012
James L. Searcy; Jeremiah T. Phelps; Tristano Pancani; Inga Kadish; Jelena Popovic; Katie L. Anderson; Tina L. Beckett; Michael P. Murphy; Kuey-Chu Chen; Eric M. Blalock; Philip W. Landfield; Nada M. Porter; Olivier Thibault
Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimers disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.
Brain Research | 2007
Lawrence D. Brewer; Olivier Thibault; Jeanise Staton; Veronique Thibault; Justin T. Rogers; Gisela García-Ramos; Susan D. Kraner; Philip W. Landfield; Nada M. Porter
Excessive glutamate (Glu) stimulation of the NMDA-R is a widely recognized trigger for Ca(2+)-mediated excitotoxicity. Primary neurons typically show a large increase in vulnerability to excitotoxicity with increasing days in vitro (DIV). This enhanced vulnerability has been associated with increased expression of the NR2B subunit or increased NMDA-R current, but the detailed age-courses of these variables in primary hippocampal neurons have not been compared in the same study. Further, it is not clear whether the NMDA-R is the only source of excess Ca(2+). Here, we used primary hippocampal neurons to examine the age dependence of the increase in excitotoxic vulnerability with changes in NMDA-R current, and subunit expression. We also tested whether L-type voltage-gated Ca(2+) channels (L-VGCCs) contribute to the enhanced vulnerability. The EC(50) for Glu toxicity decreased by approximately 10-fold between 8-9 and 14-15 DIV, changing little thereafter. Parallel experiments found that during the same period both amplitude and duration of NMDA-R current increased dramatically; this was associated with an increase in protein expression of the NR1 and NR2A subunits, but not of the NR2B subunit. Compared to MK-801, ifenprodil, a selective NR2B antagonist, was less effective in protecting older than younger neurons from Glu insult. Conversely, nimodipine, an L-VGCC antagonist, protected older but not younger neurons. Our results indicate that enhanced excitotoxic vulnerability with age in culture was associated with a substantial increase in NMDA-R current, concomitant increases in NR2A and NR1 but not NR2B subunit expression, and with apparent recruitment of L-VGCCs into the excitotoxic process.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Caitlin S. Latimer; Lawrence D. Brewer; James L. Searcy; Kuey-Chu Chen; Jelena Popovic; Susan D. Kraner; Olivier Thibault; Eric M. Blalock; Philip W. Landfield; Nada M. Porter
Significance Higher blood levels of vitamin D are associated with better health outcomes. Vitamin D deficiency, however, is common among the elderly. Despite targets in the brain, little is known about how vitamin D affects cognitive function. In aging rodents, we modeled human serum vitamin D levels ranging from deficient to sufficient and tested whether increasing dietary vitamin D could maintain or improve cognitive function. Treatment was initiated at middle age, when markers of aging emerge, and maintained for ∼6 mo. Compared with low- or normal-dietary vitamin D groups, only aging rats on higher vitamin D could perform a complex memory task and had blood levels considered in the optimal range. These results suggest that vitamin D may improve the likelihood of healthy cognitive aging. Vitamin D is an important calcium-regulating hormone with diverse functions in numerous tissues, including the brain. Increasing evidence suggests that vitamin D may play a role in maintaining cognitive function and that vitamin D deficiency may accelerate age-related cognitive decline. Using aging rodents, we attempted to model the range of human serum vitamin D levels, from deficient to sufficient, to test whether vitamin D could preserve or improve cognitive function with aging. For 5–6 mo, middle-aged F344 rats were fed diets containing low, medium (typical amount), or high (100, 1,000, or 10,000 international units/kg diet, respectively) vitamin D3, and hippocampal-dependent learning and memory were then tested in the Morris water maze. Rats on high vitamin D achieved the highest blood levels (in the sufficient range) and significantly outperformed low and medium groups on maze reversal, a particularly challenging task that detects more subtle changes in memory. In addition to calcium-related processes, hippocampal gene expression microarrays identified pathways pertaining to synaptic transmission, cell communication, and G protein function as being up-regulated with high vitamin D. Basal synaptic transmission also was enhanced, corroborating observed effects on gene expression and learning and memory. Our studies demonstrate a causal relationship between vitamin D status and cognitive function, and they suggest that vitamin D-mediated changes in hippocampal gene expression may improve the likelihood of successful brain aging.
Journal of Neurochemistry | 2009
Tristano Pancani; Jeremiah T. Phelps; James L. Searcy; Michael W. Kilgore; Kuey-Chu Chen; Nada M. Porter; Olivier Thibault
Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer’s disease (AD), anti‐diabetic agents (thiazolidinediones‐TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca2+ dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca2+ signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca2+ influx in primary hippocampal cultured neurons, voltage‐gated Ca2+ channel (VGCC) and the NMDA receptor (NMDAR). VGCC‐ and NMDAR‐mediated Ca2+ currents were recorded using patch‐clamp techniques, and Ca2+ intracellular levels were monitored with Ca2+ imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR‐mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca2+‐dependent pathways in the brain and have different inhibitory profiles on two major Ca2+ sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.