Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence E. Goldfinger is active.

Publication


Featured researches published by Lawrence E. Goldfinger.


Nature Reviews Molecular Cell Biology | 2003

Ras GTPases: integrins' friends or foes?

Kayoko Kinbara; Lawrence E. Goldfinger; Malene Hansen; Fan-Li Chou; Mark H. Ginsberg

Integrins are cell-surface receptors that mediate and coordinate cellular responses to the extracellular matrix (ECM). Cellular signalling pathways can regulate cell adhesion by altering the affinity and avidity of integrins for ECM. The Ras family of small G proteins, which includes H-ras, R-ras and Rap, are important elements in cellular signalling pathways that control integrin function.


Journal of Cell Biology | 2003

Spatial restriction of α4 integrin phosphorylation regulates lamellipodial stability and α4β1-dependent cell migration

Lawrence E. Goldfinger; Jaewon Han; William B. Kiosses; Alan K. Howe; Mark H. Ginsberg

Întegrins coordinate spatial signaling events essential for cell polarity and directed migration. Such signals from α4 integrins regulate cell migration in development and in leukocyte trafficking. Here, we report that efficient α4-mediated migration requires spatial control of α4 phosphorylation by protein kinase A, and hence localized inhibition of binding of the signaling adaptor, paxillin, to the integrin. In migrating cells, phosphorylated α4 accumulated along the leading edge. Blocking α4 phosphorylation by mutagenesis or by inhibition of protein kinase A drastically reduced α4-dependent migration and lamellipodial stability. α4 phosphorylation blocks paxillin binding in vitro; we now find that paxillin and phospho-α4 were in distinct clusters at the leading edge of migrating cells, whereas unphosphorylated α4 and paxillin colocalized along the lateral edges of those cells. Furthermore, enforced paxillin association with α4 inhibits migration and reduced lamellipodial stability. These results show that topographically specific integrin phosphorylation can control cell migration and polarization by spatial segregation of adaptor protein binding.


Journal of Cell Biology | 2006

RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration

Lawrence E. Goldfinger; Celeste Ptak; Erin D. Jeffery; Jeffrey Shabanowitz; Donald F. Hunt; Mark H. Ginsberg

The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to identify RLIP76 (RalBP1) as a novel R-Ras effector. RLIP76 binds directly to R-Ras in a GTP-dependent manner, but does not physically associate with the closely related paralogues H-Ras and Rap1A. RLIP76 is required for adhesion-induced Rac activation and the resulting cell spreading and migration, as well as for the ability of R-Ras to enhance these functions. RLIP76 regulates Rac activity through the adhesion-induced activation of Arf6 GTPase and activation of Arf6 bypasses the requirement for RLIP76 in Rac activation and cell spreading. Thus, we identify a novel R-Ras effector, RLIP76, which links R-Ras to adhesion-induced Rac activation through a GTPase cascade that mediates cell spreading and migration.


Blood | 2010

Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency

Gauthami Jalagadugula; Guangfen Mao; Gurpreet Kaur; Lawrence E. Goldfinger; Danny N. Dhanasekaran; A. Koneti Rao

Mutations in transcription factor RUNX1 are associated with familial platelet disorder, thrombocytopenia, and predisposition to leukemia. We have described a patient with thrombocytopenia and impaired agonist-induced platelet aggregation, secretion, and glycoprotein (GP) IIb-IIIa activation, associated with a RUNX1 mutation. Platelet myosin light chain (MLC) phosphorylation and transcript levels of its gene MYL9 were decreased. Myosin IIA and MLC phosphorylation are important in platelet responses to activation and regulate thrombopoiesis by a negative regulatory effect on premature proplatelet formation. We addressed the hypothesis that MYL9 is a transcriptional target of RUNX1. Chromatin immunoprecipitation (ChIP) using megakaryocytic cells revealed RUNX1 binding to MYL9 promoter region -729/-542 basepairs (bp), which contains 4 RUNX1 sites. Electrophoretic mobility shift assay showed RUNX1 binding to each site. In transient ChIP assay, mutation of these sites abolished binding of RUNX1 to MYL9 promoter construct. In reporter gene assays, deletion of each RUNX1 site reduced activity. MYL9 expression was inhibited by RUNX1 short interfering RNA (siRNA) and enhanced by RUNX1 overexpression. RUNX1 siRNA decreased cell spreading on collagen and fibrinogen. Our results constitute the first evidence that the MYL9 gene is a direct target of RUNX1 and provide a mechanism for decreased platelet MYL9 expression, MLC phosphorylation, thrombocytopenia, and platelet dysfunction associated with RUNX1 mutations.


Circulation Research | 2008

Localized α4 Integrin Phosphorylation Directs Shear Stress–Induced Endothelial Cell Alignment

Lawrence E. Goldfinger; Eleni Tzima; Rebecca A. Stockton; William B. Kiosses; Kayoko Kinbara; Eugene Tkachenko; Edgar Gutierrez; Alex Groisman; Phu Nguyen; Shu Chien; Mark H. Ginsberg

Vascular endothelial cells respond to laminar shear stress by aligning in the direction of flow, a process which may contribute to atheroprotection. Here we report that localized &agr;4 integrin phosphorylation is a mechanism for establishing the directionality of shear stress–induced alignment in microvascular endothelial cells. Within 5 minutes of exposure to a physiological level of shear stress, endothelial &agr;4 integrins became phosphorylated on Ser988. In wounded monolayers, phosphorylation was enhanced at the downstream edges of cells relative to the source of flow. The shear-induced &agr;4 integrin phosphorylation was blocked by inhibitors of cAMP-dependent protein kinase A (PKA), an enzyme involved in the alignment of endothelial cells under prolonged shear. Moreover, shear-induced localized activation of the small GTPase Rac1, which specifies the directionality of endothelial alignment, was similarly blocked by PKA inhibitors. Furthermore, endothelial cells bearing a nonphosphorylatable &agr;4(S988A) mutation failed to align in response to shear stress, thus establishing &agr;4 as a relevant PKA substrate. We thereby show that shear-induced PKA-dependent &agr;4 integrin phosphorylation at the downstream edge of endothelial cells promotes localized Rac1 activation, which in turn directs cytoskeletal alignment in response to shear stress.


Blood | 2017

Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth.

James V. Michael; Jeremy G.T. Wurtzel; Guang Fen Mao; A. Koneti Rao; Mikhail A. Kolpakov; Abdelkarim Sabri; Nicholas E. Hoffman; Sudarsan Rajan; Dhanendra Tomar; Muniswamy Madesh; Marvin T. Nieman; Johnny Yu; Leonard C. Edelstein; Jesse W. Rowley; Andrew S. Weyrich; Lawrence E. Goldfinger

Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.


Cancer Research | 2012

RALBP1/RLIP76 depletion in mice suppresses tumor growth by inhibiting tumor neovascularization

Seunghyung Lee; Jeremy G.T. Wurtzel; Sharad S. Singhal; Sanjay Awasthi; Lawrence E. Goldfinger

RalBP1/RLIP76 is a widely expressed multifunctional protein that binds the Ral and R-Ras small GTPases. In the mouse, RLIP76 is nonessential but its depletion or blockade promotes tumorigenesis and heightens the sensitivity of normal and tumor cells to radiation and cytotoxic drugs. However, its pathobiologic functions, which support tumorigenesis, are not well understood. Here, we show that RLIP76 is required for angiogenesis and for efficient neovascularization of primary solid tumors. Tumor growth from implanted melanoma or carcinoma cells was blunted in RLIP76(-/-) mice. An X-ray microcomputed tomography-based method to model tumor vascular structures revealed defects in both the extent and form of tumor angiogenesis in RLIP76(-/-) mice. Specifically, tumor vascular volumes were diminished and vessels were fewer in number, shorter, and narrower in RLIP76(-/-) mice than in wild-type mice. Moreover, we found that angiogenesis was blunted in mutant mice in the absence of tumor cells, with endothelial cells isolated from these animals exhibiting defects in migration, proliferation, and cord formation in vitro. Taken together, our results establish that RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.


Small GTPases | 2012

Palmitoylation regulates vesicular trafficking of R-Ras to membrane ruffles and effects on ruffling and cell spreading

Jeremy G.T. Wurtzel; Puneet Kumar; Lawrence E. Goldfinger

In this study we investigated the dynamics of R-Ras intracellular trafficking and its contributions to the unique roles of R-Ras in membrane ruffling and cell spreading. Wild type and constitutively active R-Ras localized to membranes of both Rab11- and transferrin-positive and -negative vesicles, which trafficked anterograde to the leading edge in migrating cells. H-Ras also co-localized with R-Ras in many of these vesicles in the vicinity of the Golgi, but R-Ras and H-Ras vesicles segregated proximal to the leading edge, in a manner dictated by the C-terminal membrane-targeting sequences. These segregated vesicle trafficking patterns corresponded to distinct modes of targeting to membrane ruffles at the leading edge. Geranylgeranylation was required for membrane anchorage of R-Ras, whereas palmitoylation was required for exit from the Golgi in post-Golgi vesicle membranes and trafficking to the plasma membrane. R-Ras vesicle membranes did not contain phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), whereas R-Ras co-localized with PtdIns(3,4,5)P3 in membrane ruffles. Finally, palmitoylation-deficient R-Ras blocked membrane ruffling, R-Ras/PI3-kinase interaction, enrichment of PtdIns(3,4,5)P3 at the plasma membrane, and R-Ras-dependent cell spreading. Thus, lipid modification of R-Ras dictates its vesicle trafficking, targeting to membrane ruffles, and its unique roles in localizing PtdIns(3,4,5)P3 to ruffles and promoting cell spreading.


Journal of Biological Chemistry | 2013

RhoG Protein Regulates Glycoprotein VI-Fc Receptor γ-Chain Complex-mediated Platelet Activation and Thrombus Formation

Soochong Kim; Carol Dangelmaier; Dheeraj Bhavanasi; Shu Meng; Hong Wang; Lawrence E. Goldfinger; Satya P. Kunapuli

Background: RhoG is a ubiquitously expressed member of the Rho family of GTPases. Results: RhoG-deficient platelets display severely impaired GPVI-dependent platelet activation. Conclusion: RhoG plays an important role in GPVI-FcRγ complex-mediated platelet activation and thrombus formation. Significance: Our study enhances the understanding of the molecular mechanisms of GPVI-FcRγ complex activation. We investigated the mechanism of activation and functional role of a hitherto uncharacterized signaling molecule, RhoG, in platelets. We demonstrate for the first time the expression and activation of RhoG in platelets. Platelet aggregation, integrin αIIbβ3 activation, and α-granule and dense granule secretion in response to the glycoprotein VI (GPVI) agonists collagen-related peptide (CRP) and convulxin were significantly inhibited in RhoG-deficient platelets. In contrast, 2-MeSADP- and AYPGKF-induced platelet aggregation and secretion were minimally affected in RhoG-deficient platelets, indicating that the function of RhoG in platelets is GPVI-specific. CRP-induced phosphorylation of Syk, Akt, and ERK, but not SFK (Src family kinase), was significantly reduced in RhoG-deficient platelets. CRP-induced RhoG activation was consistently abolished by a pan-SFK inhibitor but not by Syk or PI3K inhibitors. Interestingly, unlike CRP, platelet aggregation and Syk phosphorylation induced by fucoidan, a CLEC-2 agonist, were unaffected in RhoG-deficient platelets. Finally, RhoG−/− mice had a significant delay in time to thrombotic occlusion in cremaster arterioles compared with wild-type littermates, indicating the important in vivo functional role of RhoG in platelets. Our data demonstrate that RhoG is expressed and activated in platelets, plays an important role in GPVI-Fc receptor γ-chain complex-mediated platelet activation, and is critical for thrombus formation in vivo.


Developmental Neurobiology | 2014

Activation of PI3K and R-ras signaling promotes the extension of sensory axons on inhibitory chondroitin sulfate proteoglycans

Lee D. Silver; James V. Michael; Lawrence E. Goldfinger; Gianluca Gallo

Chondroitin sulfate proteoglycans (CSPGs) are extracellular inhibitors of axon extension and plasticity, and cause growth cones to exhibit dystrophic behaviors. Phosphoinositide 3‐kinase (PI3K) is a lipid kinase activated by axon growth promoting signals. In this study, we used embryonic chicken dorsal root ganglion neurons to determine if CSPGs impair signaling through PI3K. We report that CSPGs inhibit PI3K signaling in axons and growth cones, as evidenced by decreased levels of phosphorylated downstream kinases (Akt and S6). Direct activation of PI3K signaling, using a cell permeable phosphopeptide (PI3Kpep), countered the effects of CSPGs on growth cones and axon extension. Both overnight and acute treatment with PI3Kpep promoted axon extension on CSPG‐coated substrates. The R‐Ras GTPase is an upstream positive regulator of PI3K signaling. Expression of constitutively active R‐Ras promoted axon extension and growth cone elaboration on CSPGs and permissive substrata. In contrast, an N‐terminus‐deleted constitutively active R‐Ras, deficient in PI3K activation, promoted axon extension but not growth cone elaboration on CSPGs and permissive substrata. These data indicate that activation of R‐Ras‐PI3K signaling may be a viable approach for manipulating axon extension on CSPGs.

Collaboration


Dive into the Lawrence E. Goldfinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony P. Orth

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge