Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony P. Orth is active.

Publication


Featured researches published by Anthony P. Orth.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Large-scale analysis of the human and mouse transcriptomes

Andrew I. Su; Michael P. Cooke; Keith A. Ching; Yaron Hakak; John R. Walker; Tim Wiltshire; Anthony P. Orth; Raquel G. Vega; Lisa M. Sapinoso; Aziz Moqrich; Ardem Patapoutian; Garret M. Hampton; Peter G. Schultz; John B. Hogenesch

High-throughput gene expression profiling has become an important tool for investigating transcriptional activity in a variety of biological samples. To date, the vast majority of these experiments have focused on specific biological processes and perturbations. Here, we have generated and analyzed gene expression from a set of samples spanning a broad range of biological conditions. Specifically, we profiled gene expression from 91 human and mouse samples across a diverse array of tissues, organs, and cell lines. Because these samples predominantly come from the normal physiological state in the human and mouse, this dataset represents a preliminary, but substantial, description of the normal mammalian transcriptome. We have used this dataset to illustrate methods of mining these data, and to reveal insights into molecular and physiological gene function, mechanisms of transcriptional regulation, disease etiology, and comparative genomics. Finally, to allow the scientific community to use this resource, we have built a free and publicly accessible website (http://expression.gnf.org) that integrates data visualization and curation of current gene annotations.


Cell | 2008

Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication

Ronny König; Yingyao Zhou; Daniel Elleder; Tracy L. Diamond; Ghislain M. C. Bonamy; Jeffrey T. Irelan; Chih-yuan Chiang; Buu P. Tu; Paul D. De Jesus; Caroline E. Lilley; Shannon Seidel; Amanda M. Opaluch; Jeremy S. Caldwell; Matthew D. Weitzman; Kelli Kuhen; Sourav Bandyopadhyay; Trey Ideker; Anthony P. Orth; Loren Miraglia; Frederic D. Bushman; John A. T. Young; Sumit K. Chanda

Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here, we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA-damage response, and RNA splicing were identified as important modulators of early-stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence the initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of posttranslational modification, and nucleic acid-binding proteins. Finally, 15 proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multiscale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate the early steps of HIV-1 infection.


Nature | 2010

Human Host Factors Required for Influenza Virus Replication

Renate König; Silke Stertz; Yingyao Zhou; Atsushi Inoue; H.-Heinrich Hoffmann; Suchita Bhattacharyya; Judith G. Alamares; Donna M. Tscherne; Mila Brum Ortigoza; Yuhong Liang; Qinshan Gao; Shane E. Andrews; Sourav Bandyopadhyay; Paul D. De Jesus; Buu P. Tu; Lars Pache; Crystal Shih; Anthony P. Orth; Ghislain M. C. Bonamy; Loren Miraglia; Trey Ideker; Adolfo García-Sastre; John A. T. Young; Peter Palese; Megan L. Shaw; Sumit K. Chanda

Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host–pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-β. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIβ (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.


PLOS ONE | 2008

Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling

Wei Li; Mario H. Bengtson; Axel Ulbrich; Akio Matsuda; Venkateshwar A. Reddy; Anthony P. Orth; Sumit K. Chanda; Serge Batalov; Claudio A. P. Joazeiro

Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub) ligases. We have annotated ∼617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein – two transmembrane domains mediate its localization to the organelles outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULANs downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-κB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells

Vadim Iourgenko; Wenjun Zhang; Craig Mickanin; Ira Daly; Can Jiang; Jonathan M. Hexham; Anthony P. Orth; Loren Miraglia; Jodi Meltzer; Dan Garza; Gung-Wei Chirn; Elizabeth McWhinnie; Dalia Cohen; Joanne Skelton; Robert D. Terry; Yang Yu; Dale L. Bodian; Frank P. Buxton; Jian Zhu; Chuanzheng Song; Mark Labow

This report describes an unbiased method for systematically determining gene function in mammalian cells. A total of 20,704 predicted human full-length cDNAs were tested for induction of the IL-8 promoter. A number of genes, including those for cytokines, receptors, adapters, kinases, and transcription factors, were identified that induced the IL-8 promoter through known regulatory sites. Proteins that acted through a cooperative interaction between an AP-1 and an unrecognized cAMP response element (CRE)-like site were also identified. A protein, termed transducer of regulated cAMP response element-binding protein (CREB) (TORC1), was identified that activated expression through the variant CRE and consensus CRE sites. TORC1 potently induced known CREB1 target genes, bound CREB1, and activated expression through a potent transcription activation domain. A functional Drosophila TORC gene was also identified. Thus, TORCs represent a family of highly conserved CREB coactivators that may control the potency and specificity of CRE-mediated responses.


Proceedings of the National Academy of Sciences of the United States of America | 2004

An approach to genomewide screens of expressed small interfering RNAs in mammalian cells

Lianxing Zheng; Jun Liu; Sergei Batalov; Demin Zhou; Anthony P. Orth; Sheng Ding; Peter G. Schultz

To facilitate the construction of large genomewide libraries of small interfering RNAs (siRNAs), we have developed a dual promoter system (pDual) in which a synthetic DNA encoding a gene-specific siRNA sequence is inserted between two different opposing polymerase III promoters, the mouse U6 and human H1 promoters. Upon transfection into mammalian cells, the sense and antisense strands of the duplex are transcribed by these two opposing promoters from the same template, resulting in a siRNA duplex with a uridine overhang on each 3′ terminus. A single-step PCR protocol has been developed by using this dual promoter system that allows the production of siRNA expression cassettes in a high-throughput manner. We have shown that siRNAs transcribed by either the dual promoter vector or siRNA expression cassettes can induce strong and gene-specific suppression of both endogenous genes and ectopically expressed genes in mammalian cells. Furthermore, we have constructed an arrayed siRNA expression cassette library that targets >8,000 genes with two siRNA sequences per gene. A high-throughput screen of this library has revealed both known and unique genes involved in the NF-κB signaling pathway.


Nature Methods | 2007

A probability-based approach for the analysis of large-scale RNAi screens

Renate König; Chih-yuan Chiang; Buu P. Tu; S Frank Yan; Paul DeJesus; Angelica Romero; Tobias Bergauer; Anthony P. Orth; Ute Krueger; Yingyao Zhou; Sumit K. Chanda

We describe a statistical analysis methodology designed to minimize the impact of off-target activities upon large-scale RNA interference (RNAi) screens in mammalian cells. Application of this approach enhances reconfirmation rates and facilitates the experimental validation of new gene activities through the probability-based identification of multiple distinct and active small interfering RNAs (siRNAs) targeting the same gene. We further extend this approach to establish that the optimal redundancy for efficacious RNAi collections is between 4–6 siRNAs per gene.


Cell | 2014

SWELL1, a Plasma Membrane Protein, Is an Essential Component of Volume-Regulated Anion Channel

Zhaozhu Qiu; Adrienne E. Dubin; Jayanti Mathur; Buu Tu; Kritika Reddy; Loren Miraglia; Jürgen Reinhardt; Anthony P. Orth; Ardem Patapoutian

Maintenance of a constant cell volume in response to extracellular or intracellular osmotic changes is critical for cellular homeostasis. Activation of a ubiquitous volume-regulated anion channel (VRAC) plays a key role in this process; however, its molecular identity in vertebrates remains unknown. Here, we used a cell-based fluorescence assay and performed a genome-wide RNAi screen to find components of VRAC. We identified SWELL1 (LRRC8A), a member of a four-transmembrane protein family with unknown function, as essential for hypotonicity-induced iodide influx. SWELL1 is localized to the plasma membrane, and its knockdown dramatically reduces endogenous VRAC currents and regulatory cell volume decrease in various cell types. Furthermore, point mutations in SWELL1 cause a significant change in VRAC anion selectivity, demonstrating that SWELL1 is an essential VRAC component. These findings enable further molecular characterization of the VRAC channel complex and genetic studies for understanding the function of VRAC in normal physiology and disease.


Nature Neuroscience | 2006

High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol

Michael Bandell; Adrienne E. Dubin; Matt J. Petrus; Anthony P. Orth; Jayanti Mathur; Sun Wook Hwang; Ardem Patapoutian

Menthol is a cooling compound derived from mint leaves and is extensively used as a flavoring chemical. Menthol activates transient receptor potential melastatin 8 (TRPM8), an ion channel also activated by cold, voltage and phosphatidylinositol-4,5-bisphosphate (PIP2). Here we investigated the mechanism by which menthol activates mouse TRPM8. Using a new high-throughput approach, we screened a random mutant library consisting of ∼14,000 individual TRPM8 mutants for clones that are affected in their response to menthol while retaining channel function. We identified determinants of menthol sensitivity in two regions: putative transmembrane segment 2 (S2) and the C-terminal TRP domain. Analysis of these mutants indicated that activation by menthol involves a gating mechanism distinct and separable from gating by cold, voltage or PIP2. Notably, TRP domain mutations mainly attenuated menthol efficacy, suggesting that this domain influences events downstream of initial binding. In contrast, S2 mutations strongly shifted the concentration dependence of menthol activation, raising the possibility that S2 influences menthol binding.Note: The AOP version of this article was corrected on 19 March 2006. Please see the PDF for details.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Genome-wide functional analysis of human cell-cycle regulators

Mridul Mukherji; Russell Bell; Lubica Supekova; Yan Wang; Anthony P. Orth; Serge Batalov; Loren Miraglia; Dieter Huesken; Joerg Lange; Chris Martin; Sudhir Sahasrabudhe; Mischa Reinhardt; Francois Natt; Jonathan Hall; Craig Mickanin; Mark Labow; Sumit K. Chanda; Charles Y. Cho; Peter G. Schultz

Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs). Analysis of >2 million images, acquired by quantitative fluorescence microscopy, showed that depletion of 1,152 genes strongly affected cell-cycle progression. These genes clustered into eight distinct phenotypic categories based on phase of arrest, nuclear area, and nuclear morphology. Phase-specific networks were built by interrogating knowledge-based and physical interaction databases with identified genes. Genome-wide analysis of cell-cycle regulators revealed a number of kinase, phosphatase, and proteolytic proteins and also suggests that processes thought to regulate G1-S phase progression like receptor-mediated signaling, nutrient status, and translation also play important roles in the regulation of G2/M phase transition. Moreover, 15 genes that are integral to TNF/NF-κB signaling were found to regulate G2/M, a previously unanticipated role for this pathway. These analyses provide systems-level insight into both known and novel genes as well as pathways that regulate cell-cycle progression, a number of which may provide new therapeutic approaches for the treatment of cancer.

Collaboration


Dive into the Anthony P. Orth's collaboration.

Top Co-Authors

Avatar

Loren Miraglia

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Peter G. Schultz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

John R. Walker

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Serge Batalov

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Charles Y. Cho

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Eric C. Peters

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Genevieve Welch

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Ghislain M. C. Bonamy

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

John B. Hogenesch

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shane R. Horman

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge